![2021-2022学年沪科版九年级数学下册第25章投影与视图专项练习试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12678469/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪科版九年级数学下册第25章投影与视图专项练习试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12678469/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪科版九年级数学下册第25章投影与视图专项练习试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12678469/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第25章 投影与视图综合与测试课时训练
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试课时训练,共20页。
沪科版九年级数学下册第25章投影与视图专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的俯视图是( )A. B.C. D.2、如图,从正面看这个几何体得到的图形是( )A. B.C. D.3、如图所示的几何体的左视图是( )A. B. C. D.4、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是( )A. B. C. D.5、如图所示的工件中,该几何体的俯视图是( )A. B. C. D.6、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A.12 B.11 C.10 D.97、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )A. B.C. D.8、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是( )A.个 B.个 C.个 D.个9、下列几何体中,其三视图完全相同的是( )A. B.C. D.10、下列几何体的主视图和俯视图完全相同的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _____.2、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数最少是____3、如图所给出的几何体的三视图,可以确定几何体中小正方体的数目为___.4、由若干个小正方体组成的几何体的三视图如图所示,则组成这个几何体的小正方体的个数为______.5、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 ___cm2.三、解答题(5小题,每小题10分,共计50分)1、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.2、请用线把图中各物体与它们的投影连接起来.3、如图是由几个相同的边长为1个单位的小立方块搭成的几何体从上面看到的形状,方格中的数字表示该位置的小立方块的个数.(1)请在方格纸中分别画出从正面和左面所观察到的几何体的形状;(2)由三个不同方向所观察到的图形可知这个组合几何体的表面积为________个平方单位(包括底面积).4、如图是由六个棱长为1 cm的小正方体组成的几何体.(1)该几何体的表面积是(含下底面) cm2;(2)分别画出该立体图形的三视图.5、(1)已知图1是由大小相同的小立方块搭成的几何体,请在图2的方格中分别画出从左面和从上面看到的该几何体的形状图(请依照从正面看的范例画图); (2)若要用大小相同的小立方块搭一个几何体,使得它从左面和从上面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体至少需要 个小立方块. -参考答案-一、单选题1、C【分析】根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.【详解】解:从上面看该几何体,所看到的图形如下:故选:C.【点睛】本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.2、A【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:观察图形从左到右小正方块的个数分别为1,2,1,故选A.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键.3、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.【点睛】本题考查了左视图,熟记定义是解题关键.4、D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D.【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键.5、B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B.【点睛】本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.6、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;∴这个几何体最少需要用个小正方体.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.7、B【分析】根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.【详解】解:∵既可以堵住圆形空洞,又可以堵住方形空洞,∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,A.正方体的三视图都是正方形,没有圆形,不可以是选项A;B.圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B,C.圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C;D.球体的三视图都是圆形,没有方形,不可以是选项D.故选择B.【点睛】本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.8、D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,故选D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.10、D【分析】根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.【详解】解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;D、圆的主视图和俯视图都为圆,故D选项符合题意;故选D.【点睛】本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.二、填空题1、③④①②【分析】根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.【详解】解:西为③,西北为④,东北为①,东为②,将它们按时间先后顺序排列为③④①②,故答案是:③④①②.【点睛】本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.2、4【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解.【详解】解:由主视图,左视图画出几何体,如图:3、9或10或11.【分析】从俯视图看出底层小正方体的位置,两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,分5种情况可取定小正方体的个数.【详解】解:从俯视图可以看出分简单组合体两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,∴①简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是1+2+2+3+1=9个;如图②简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是1+2+2+3+2=10个;如图∴③简单组合体可以是第一排中间列两层2个小正方体,右边列一层1个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+1+2+3+2=10个;如图∴④简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是2+2+2+3+1=10个;如图⑤简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+2+2+3+2=11个;如图所以搭成这个几何体所用的小立方块的个数为9或10或11,故答案为:9或10或11.【点睛】本题考查根据组合体的三视图确定小正方体的个数,掌握三视图的特征,结合图形分类讨论解决问题是解题关键.4、6【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,进而判断图形的形状,即可得出小正方体的个数.【详解】从俯视图看至少有4个小正方体,从主视图看至少有6个小正方体,结合左视图,则只有6个小正方体.故答案为:6.【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,根据三视图确定物体的形状,也考查学生空间想象能力.5、162【分析】展开后底面一边长为7cm,求出底面的周长,用底面周长×侧边长计算即可.【详解】解:∵一个直九棱柱底面的每条边长都等于3cm,∴直九棱柱底面的周长为9×3=27cm;侧面积是27×6=162(cm2).故答案为162.【点睛】本题考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长×侧棱长.三、解答题1、答案见解析【分析】根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.【详解】解:从正面看到的该几何体的形状图如下图所示:从左面看到的该几何体的形状图如下图所示:【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.2、见解析【分析】根据正投影的定义一一判断即可.【详解】解:上面一行由左至右第1~4个物体,分别与下面一行由左起第3,4,2,1的投影对应.连线如图所示.【点睛】本题考查正投影,理解投影的意义是解题的关键.3、(1)图见解析;(2)24;【分析】(1)从正面看有2列,每列小正方形数目分别为2,3;从左面看有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.【详解】解:(1)如图所示 (2)根据从三个方向看的形状图,这个几何体的表面积为2×(5+4+3)=24(平方单位),故答案为:24.【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法.4、(1)24;(2)见解析【分析】(1)根据三视图可求出几何体的表面积;(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.【详解】解:(1)该几何体的表面积是:4×2+5×2+3×2=24(cm2),故答案为: 24;(2)如图所示:【点睛】本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法.5、(1)见解析;(2)6.【分析】(1)从上面看得到从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【详解】解:(1)如图所示:(2)从左面和从上面看到的形状图与图2方格中所画的形状图相同,在俯视图的相应位置所摆放的小立方体的个数如图所示:或因此最少需要6个小立方体.故答案为6.【点睛】本题考查给出立体图形画三视图,根据画出的左视图与俯视图确定最少正方体,掌握三视图定义,利用数形结合思想是解题关键
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共18页。试卷主要包含了分别从正面,如图所示的几何体的主视图是等内容,欢迎下载使用。
这是一份初中第25章 投影与视图综合与测试课堂检测,共20页。试卷主要包含了如图,该几何体的主视图是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共20页。试卷主要包含了如图,该几何体的左视图是等内容,欢迎下载使用。