![2022年必考点解析沪科版九年级数学下册第25章投影与视图达标测试试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12678515/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第25章投影与视图达标测试试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12678515/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第25章投影与视图达标测试试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12678515/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第25章 投影与视图综合与测试随堂练习题
展开
这是一份沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共18页。试卷主要包含了下面左侧几何体的主视图是,如图所示几何体的左视图是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )
A.6B.7C.10D.1
2、如图为某几何体的三视图,则该几何体是( )
A.圆锥B.圆柱C.三棱柱D.四棱柱
3、如图所示的几何体的主视图为( )
A.B.C.D.
4、下列四个几何体中,主视图与俯视图不同的几何体是( )
A.B.
C.D.
5、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )
A.左视图和俯视图不变B.主视图和左视图不变
C.主视图和俯视图不变D.都不变
6、下面左侧几何体的主视图是( )
A.B.C.D.
7、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )
A.B.C.D.
8、如图,是空心圆柱体,其主视图是下列图中的( )
A.B.C.D.
9、如图所示几何体的左视图是( )
A.B.
C.D.
10、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )
A.四棱柱B.四棱锥C.圆柱D.圆锥
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_____.
2、如图,某工件的三视图(单位:),若俯视图为直角三角形,则此工件的体积为__.
3、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为______个.
4、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 ___个小立方块搭成的.
5、请在右侧小方格内用阴影表示“从正面观察”得到的平面图形的示意图._________
三、解答题(5小题,每小题10分,共计50分)
1、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.
2、补全如图立体图形的三视图.
3、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.
(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.
4、将6个棱长为3cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.
(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.
(2)求该几何体被染成红色部分的面积.
5、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.
-参考答案-
一、单选题
1、C
【分析】
从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.
【详解】
解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.
由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.
因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.
故选:C.
【点睛】
题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.
2、C
【分析】
根据三视图判断该几何体即可.
【详解】
解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.
故选:C.
【点睛】
本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.
3、A
【分析】
根据主视图是从物体的正面看得到的视图即可求解.
【详解】
解:主视图如下
故选:A.
【点睛】
本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.
4、C
【分析】
正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.
【详解】
解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;
B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;
C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;
D、球体的主视图与俯视图都是圆形,故不符合题意.
故选:C.
【点睛】
本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.
5、A
【分析】
根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.
【详解】
解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,
从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,
从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,
所以A符合题意,B,C,D不符合题意;
故选:A.
【点睛】
本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.
6、A
【分析】
找出从几何体的正面看所得到的图形即可.
【详解】
解:从几何体的正面看,是一行两个并列的矩形.
故选:A.
【点睛】
本题主要考查了几何体的三视图,准确分析判断是解题的关键.
7、C
【分析】
根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论.
【详解】
解:根据左视图的定义,该几何体的左视图是:
故选:C .
【点睛】
此题考查了几何体左视图的判断,掌握左视图的定义是解题关键.
8、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
9、D
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.
【详解】
解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,
故选:D
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.
10、C
【分析】
根据三视图即可完成.
【详解】
此几何体为一个圆柱
故选:C.
【点睛】
本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.
二、填空题
1、.
【分析】
根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.
【详解】
由三视图可知,几何体是由圆柱体和圆锥体构成,
圆柱和圆锥的底面直径均为2,高分别为4和1,
∴圆锥和圆柱的底面积为π,
故该几何体的体积为:4π+π=π,
故答案为:π.
【点睛】
本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.
2、30cm3
【分析】
通过三视图还原原几何体,利用柱体的体积公式V=Sh即可求解.
【详解】
解:由主视图与左视图都是长方形,说明该几何体是柱体,由俯视图知底面是直角三角形的直三棱柱,
∴几何体的三视图转化成的几何体为:底面为直角三角形的直三棱柱,
由主视图与左视图可知底边是直角边为4cm,3cm的直角三角形,高为5cm的三棱柱,
底面三角形面积S=
∴此工件的体积=Sh=6×5=30(cm3),
故答案为:30cm3.
【点睛】
本题考查由三视图到立体图形,通过简单几何体的三视图逆向思维得出简单几何体,柱体的体积,关键是掌握由三视图通过平面图形到立体图形的想象得出几何体.
3、5
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.
【详解】
解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体.
故答案为:5.
【点睛】
本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识.
4、6
【分析】
根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题.
【详解】
解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;
∴只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,
∴最少是用6个小立方块搭成的,
故答案为:6.
【点睛】
此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
5、见解析
【分析】
按照简单组合体三视图的画法画出相应的图形即可.
【详解】
解:如图:主视图有3列,从左往右每列小正方数形数目分别为3,1,2
【点睛】
本题考查简单组合体的三视图,理解视图的意义,掌握视图的画法是得出正确答案的前提.
三、解答题
1、见解析
【分析】
主视图有3列,每列小正方形数目分别为,,;左视图有2列,每列小正方形数目分别为,;俯视图有3列,每行小正方形数目分别为,,.
【详解】
解:如图所示:
【点睛】
此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.
2、见解析
【分析】
根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.
【详解】
解:补全这个几何体的三视图如下:
.
【点睛】
本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提.
3、(1)见解析;(2)见解析
【分析】
(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;
(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.
【详解】
解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图
从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,
如图所示:
(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,
从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,
左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.
根据题意,填图如下:
【点睛】
本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.
4、(1)见解析;(2)189cm2.
【分析】
(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为1,2,1;俯视图有3列,每列小正方数形数目分别为3,1,1.据此可画出图形;
(2)分别从前面,后面,左面,右面和上面数出被染成红色部分的正方形的个数,再乘以1个面的面积即可求解.
【详解】
解:(1)作图如下:
(2)(4+4+4+4+5)×(3×3)
=21×9
=189(cm2)
答:该几何体被染成红色部分的面积为189cm2.
【点睛】
本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.
5、见解析
【分析】
利用三视图的画法画出图形即可.
【详解】
根据三视图的画法,画出相应的图形如下:
【点睛】
本题考查简单组合体的三视图,理解三视图的意义是正确解答问题的关键.
相关试卷
这是一份数学九年级下册第25章 投影与视图综合与测试综合训练题,共19页。试卷主要包含了如图,几何体的左视图是等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试练习,共18页。试卷主要包含了下列立体图形的主视图是等内容,欢迎下载使用。
这是一份2021学年第25章 投影与视图综合与测试课后作业题,共20页。试卷主要包含了如图,该几何体的左视图是,如图所示的几何体的俯视图是,下列物体中,三视图都是圆的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)