【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案及详解)
展开中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算3.14-(-π)的结果为( ) .
A.6.28 B.2π C.3.14-π D.3.14+π
2、把分式化简的正确结果为( )
A. B. C. D.
3、如图,已知于点B,于点A,.点E是的中点,则的长为( )
A.6 B. C.5 D.
4、如图,,点B和点C是对应顶点,,记,当时,与之间的数量关系为( )
A. B. C. D.
5、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )
A. B. C. D.
6、某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )
A. B.
C. D.
7、使分式有意义的x的取值范围是( )
A. B. C. D.
8、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )
A. B. C. D.
9、如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是( )
A.60 B.100 C.125 D.150
10、数轴上到点-2的距离为4的点有( ).
A.2 B.-6或2 C.0 D.-6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、根据下列各式的规律,在横线处填空:,,,,……, -______=_______.
2、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=__________.
3、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
4、一元二次方程的根是 .
5、双曲线,当时,随的增大而减小,则________.
三、解答题(5小题,每小题10分,共计50分)
1、数轴上点A表示-8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O和点B,C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为个单位长度.
动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动.其中一点到达终点时,两点都停止运动.设运动的时间为t秒.
(1)当秒时,M、N两点在折线数轴上的和谐距离为________;
(2)当点M、N都运动到折线段上时,
O、M两点间的和谐距离________(用含有t的代数式表示);
C、N两点间的和谐距离________(用含有t的代数式表示);
________时,M、N两点相遇;
(3)当________时,M、N两点在折线数轴上的和谐距离为4个单位长度;
(4)当________时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等.
2、如图,点O为直线AB上一点,过点О作射线OC,使得,将一个有一个角为30°直角三角板的直角顶点放在点O处,使边ON在射线OA上,另一边OM在直线AB的下方,将图中的三角板绕点О按顺时针方向旋转180°.
(1)三角板旋转的过程中,当时,三角板旋转的角度为 ;
(2)当ON所在的射线恰好平分时,三角板旋转的角度为 ;
(3)在旋转的过程中,与的数量关系为 ;(请写出所有可能情况)
(4)若三角板绕点О按每秒钟20°的速度顺时针旋转,同时射线OC绕点О按每秒钟5°的速度沿顺时针方向,向终边OB运动,当ON与射线OB重合时,同时停止运动,直接写出三角板的直角边所在射线恰好平分时,三角板运动时间为 .
3、解方程:.
4、如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分.
①t的值是_________;
②此时ON是否平分?说明理由;
(2)在(1)的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由;
(3)在(2)的基础上,经过多长时间,?请画图并说明理由.
5、直播购物逐渐走进了人们的生活,某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件,通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件,若将每件商品售价定为x元,日销售量设为y件.
(1)求y与x的函数表达式;
(2)当x为多少时,每天的销售利润最大?最大利润是多少?
-参考答案-
一、单选题
1、D
【分析】
根据减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】
解: 3.14-(-π)= 3.14+π.
故选:D.
【点睛】
本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.
2、A
【分析】
先确定最简公分母是(x+2)(x−2),然后通分化简.
【详解】
==;
故选A.
【点睛】
分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.
3、B
【分析】
延长交于点F,根据已知条件证明,得出,根据勾股定理求出的长度,可得结果.
【详解】
如图,延长交于点F,
∵,
∴,
∴,
∵点E是的中点,
∴,
在和中,
∴,
∴,
∴,
在中,,
∵点E是的中点,
∴,
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,勾股定理等知识点,熟练运用全等三角形的判定定理以及性质是解本题的关键.
4、B
【分析】
根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.
【详解】
∵,
∴,
∴,
在中,
∵,
∴,
∵,
∴,
∴,整理得,
故选:B.
【点睛】
本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
5、A
【分析】
根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D.
【详解】
解:A.当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;
B.由旋转可知OC与OC′是对应线段,由旋转性质可得OC=OC′,故选项B正确,不符合题意;
C.因为、都是旋转角,由旋转性质可得,故选项C正确,不符合题意;
D.由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意.
故选择A.
【点睛】
本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键.
6、A
【分析】
设这件商品的成本价为x元,售价=标价×90%,据此列方程.
【详解】
解:标价为,
九折出售的价格为,
可列方程为.
故选:A.
【点睛】
本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
7、B
【分析】
根据分式有意义的条件,即分母不为零求出x的取值范围即可.
【详解】
解:由题意得:,
解得,
故选:B.
【点睛】
本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键.
8、D
【分析】
根据负数比较大小的概念逐一比较即可.
【详解】
解析:.
故选:
【点睛】
本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.
9、B
【分析】
分析图形变化过程中的等量关系,求出变化后的长方形Ⅱ部分的长和宽即可.
【详解】
解:如图:
∵拼成的长方形的长为(a+b),宽为(a-b),
∴,解得a=25,b=5,
∴长方形Ⅱ的面积=b(a-b)=5×(25-5)=100.
故选B.
【点睛】
本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.
10、B
【分析】
分点在点-2的左边和右边两种情况讨论求解.
【详解】
解:点在点-2的左边时,为-2-4=-6,
点在点-2的右边时,为-2+4=2,
所以,在数轴上到点-2的距离是4的点所表示的数是-6或2.
故选:B.
【点睛】
本题考查数轴,注意:此题要分为两种情况:在表示-2点的左边和右边.
二、填空题
1、
【分析】
观察不难发现,两个连续自然数的倒数的和减去后一个自然数的一半的倒数,等于这两个自然数的乘积的倒数.
【详解】
解:∵
……
∴
故答案为:;
【点睛】
本题是对数字变化规律的考查,比较简单,仔细观察分母的变化找出规律是解决本题的关键.
2、-1或1.
【分析】
由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=±1,代入计算即可.
【详解】
解:∵a、b互为相反数,c、d互为倒数,m的绝对值是1,
∴a+b=0、cd=1,m=±1,
当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,
当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1.
故答案为:-1或1.
【点睛】
本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键.
3、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
4、
【详解】
解:用因式分解法解此方程
,
,
,
即.
故答案为:.
【点睛】
本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算
5、
【分析】
根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.
【详解】
根据题意得:,解得:m=﹣2.
故答案为﹣2.
【点睛】
本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.
三、解答题
1、
(1)12
(2)2(t-2);3t-6;4.4
(3)当t=5.2或3.6秒时,M、N两点在折线数轴上的和谐距离为4个单位长度;
(4)当t=3.2或8秒时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等
【分析】
(1)先求得点M表示的数为0,点N表示的数为12,据此即可求解;
(2)先求得点M表示的数为2(t-2),点N表示的数为18-3t,据此即可求解;
(3)根据题意列出方程|2(t-2) - (18-3t)|=4,即可求解;
(4)分点M在OA上,O−B−C上,CD上三种情况讨论,列出方程求解即可.
(1)
解:∵t=2时,点M表示的数为4t-8=0,点N表示的数为18-3t=12,
∴|MN|=|12-0|=12;
故答案为:12;
(2)
点N到达原点的时间为(秒),
∵点M、N都运动到折线段O−B−C上,即2<t<6,
∴点M表示的数为2(t-2),点N表示的数为18-3t,
∴O、M两点间的和谐距离|OM|=2(t-2);
C、N两点间的和谐距离|CN|=|12-(18-3t)|=3t-6;
当2(t-2)= 18-3t时,M、N两点相遇,
解得:t=4.4,
∴当t=4.4秒时,M、N两点相遇;
故答案为:2(t-2);3t-6;4.4;
(3)
当点M在OA上或在CD上即0<t2或t时,由(1)知,不存在和谐距离为4个单位长度;
当点M运动到折线段O−B−C上,即2<t<8,
依题意得:|2(t-2) - (18-3t)|=4,
解得:t=5.2或t=3.6,
∴当t=5.2或3.6秒时,M、N两点在折线数轴上的和谐距离为4个单位长度;
(4)
当点M在OA上即0<t2时,点M表示的数为4t-8,点N表示的数为18-3t,
依题意得:0-(4t-8)=18-3t-6,
解得:t=-4(不合题意,舍去);
当点M在折线段O−B−C上,即2<t8时,点M表示的数为2(t-2),点N表示的数为18-3t,
依题意得:2(t-2)-0=|18-3t-6|,
解得:t=3.2或t=8;
当点M在CD上即8<t时,点M表示的数为4(t-8),点N表示的数为18-3t,
依题意得:4(t-8)-0=6-(18-3t),
解得:t=20(不合题意,舍去);
综上,当t=3.2或8秒时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等.
【点睛】
本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用.
2、
(1)90°;
(2)150°;
(3)当0°≤∠AON≤90°时,∠CON-∠AOM =30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;
(4)秒或秒.
【分析】
(1)根据,求出旋转角∠AON=90°即可;
(2)根据,利用补角性质求出∠BOC=60°,根据ON所在的射线恰好平分,得出∠OCN=,再求出旋转角即可;
(3)分三种情况当0°≤∠AON≤90°时,求出∠AOM=90°-∠AON,∠CON=120°-∠AON,两角作差;当90°<∠AON≤120°时,求两角之和;当120°<∠AON≤180°时,求出∠AOM=120°-∠MOC,∠CON=90°-∠MOC,再求两角之差即可
(4)设三角板运动的时间为t秒,当ON平分∠AOC时,根据∠AOC的半角与旋转角相等,列方程,,当OM平分∠AOC时,根据∠AOC的半角+90°与旋转角相等,列方程,解方程即可.
(1)
解:∵ON在射线OA上,三角板绕点О按顺时针方向旋转,,
∴旋转角∠AON=90°,
∴三角板绕点О按顺时针方向旋转90°,
故答案为:90°;
(2)
解:∵,
∴∠BOC=180°-∠AOC=180°-120°=60°,
∵ON所在的射线恰好平分,
∴∠OCN=,
∴旋转角∠AON=∠AOC+∠CON=120°+30°=150°,
故答案为:150°;
(3)
当0°≤∠AON≤90°时
∵∠AOM=90°-∠AON,∠CON=120°-∠AON,
∴∠CON-∠AOM =120°-∠AON-(90°-∠AON)=30°,
当90°<∠AON≤120°时
∠AOM+∠CON=∠AOC-∠MON=120°-90°=30°,
当120°<∠AON≤180°时
∠AOM=120°-∠MOC,∠CON=90°-∠MOC,
∴∠AOM-∠CON=30°,
故答案为:当0°≤∠AON≤90°时,∠CON-∠AOM =30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;
(4)
设三角板运动的时间为t秒,∠AOC=120+5t,OD平分∠AOC,
∴∠AOD=,
∠AON=20t,
∴当ON平分∠AOC时,,
解得:秒;
当OM平分∠AOC时,,
解得秒.
∴三角板运动时间为秒或秒.
故答案为秒或秒.
【点睛】
本题考查旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程,掌握旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程是解题关键.
3、
【分析】
方程两边同时乘以12,去分母后,依次计算即可.
【详解】
∵,
去分母,得
3(2x+1)-2(x-3)=12,
去括号,得
6x+3-2x+6=12,
移项,得
6x-2x=12-3-6,
合并同类项,得
4x=3,
系数化为1,得
x=.
【点睛】
本题考查了一元一次方程的解法,熟练掌握五步骤解一元一次方程是解题的关键.
4、
(1)①5;②是,理由见解析
(2)5,理由见解析
(3)秒或秒,理由见解析
【分析】
(1)①由∠AOC的度数,求出∠COM的度数,根据互余可得出∠CON的度数,进而求出时间t;
②根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠BOM=∠COM,即可得出ON平分∠AOC;
(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;
(3)需要分两种情况,当射线OC在直线AB上方时,在直线下方时两种情况,再根据旋转建立方程即可.
【小题1】
解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC-∠CON=30°-15°=15°,
∴∠AON=∠CON,
解得:t=15°÷3°=5;
故答案为:①5;
②是,理由如下:
由上可知,∠CON=∠AON=15°,
∴ON平分∠AOC;
【小题2】
经过5秒时,OC平分∠MON,理由如下:
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度顺时针旋转,射线OC也绕O点以每秒6°的速度顺时针旋转,
设∠AON为3t,∠AOC为30°+6t,
当OC平分∠MON时,∠CON=∠COM=45°,
∴∠AOC-∠AON=45°,
可得:30°+6t-3t=45°,
解得:t=5;
【小题3】
根据题意,有两种情况,当射线OC在直线AB上方时,如图4①,当射线OC在直线直线AB下方时,如图4②,
则有30°+6t+10°=180°,或30°+6t-10°=180°,
解得t=或,
∴经过秒或秒时,∠BOC=10°.
【点睛】
此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
5、
(1)
(2)x为55时,每天的销售利润最大,最大利润是450元
【分析】
(1)原销售量20加上增加的件数即可得到函数表达式;
(2)由每件利润乘以销售量得到利润的函数关系式,化为顶点式,利用函数性质解答.
(1)
解: 件;
(2)
解:设每个月的销售利润为w元.
依题意,得:
整理,得:,
化成顶点式,得
∴当x为55时.每天的销售利润最大,最大利润是450元.
【点睛】
此题考查了二次函数的实际应用,正确理解题意列出函数关系式,并掌握将二次函数化为顶点式利用函数的性质求最值是解题的关键.
【高频真题解析】湖南省怀化市中考数学模拟真题测评 A卷(含答案及详解): 这是一份【高频真题解析】湖南省怀化市中考数学模拟真题测评 A卷(含答案及详解),共25页。试卷主要包含了下列方程变形不正确的是,下列运算正确的是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解): 这是一份【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解),共21页。试卷主要包含了已知,,,则,若a<0,则= .,方程的解为等内容,欢迎下载使用。
【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案详解),共26页。试卷主要包含了如图,OM平分,,,则.,已知4个数等内容,欢迎下载使用。