【历年真题】2022年石家庄晋州市中考数学模拟测评 卷(Ⅰ)(含答案详解)
展开
这是一份【历年真题】2022年石家庄晋州市中考数学模拟测评 卷(Ⅰ)(含答案详解),共19页。试卷主要包含了计算12a2b4•÷的结果等于,实数a等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )
A.B.
C.D.
2、无论a取什么值时,下列分式总有意义的是( )
A.B.C.D.
3、把 写成省略括号后的算式为 ( )
A.B.
C.D.
4、如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是
A.AC=ABB.∠C=∠BODC.∠C=∠BD.∠A=∠B0D
5、日历表中竖列上相邻三个数的和一定是( ).
A.3的倍数B.4的倍数C.7的倍数D.不一定
6、已知a<b,则下列不等式中不正确的是( )
A.2+a<2+bB.a-5<b-5C.-2a<-2bD.<
7、计算12a2b4•(﹣)÷(﹣)的结果等于( )
A.﹣9aB.9aC.﹣36aD.36a
8、实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有( )
①b+c>0;②a+b>a+c;③bc<ac;④ab>ac.
A.1个B.2个C.3个D.4个
9、如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.
B.
C.
D.
10、如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②.这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是( )
A.60B.100C.125D.150
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在高米,坡角为的楼梯表面铺地毯,地毯的长度至少需要________米.(精确到米)
2、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,…依此类推,则_____.
3、在下列实数(每两个3之间依次多一个“1”),中,其中无理数是________.
4、边长为a、b的长方形,它的周长为14,面积为10,则的值为__.
5、实数a、b互为相反数,c、d互为倒数,x的绝对值为,则=_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:二次函数图象的顶点坐标为,且经过点;求此二次函数的解析式.
2、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.
(1)当t为何值时,?
(2)设的面积为,写出与之间的函数关系式.
(3)当EP平分四边形PMEH的面积时,求t的值.
(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.
3、解方程:
(1)
(2)
4、在二次函数y=ax2+bx+c中,x与y的部分对应值如表:
下列说法:①该二次函数的图像经过原点;②该二次函数的图像开口向下;③该二次函数的图像经过点(﹣1,3);④当x>0时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根,其中正确的有( )
A.①②③B.①③⑤C.①③④D.②④⑤
5、某工厂甲乙两车间生产汽车零件,四月份甲乙两车间生产零件数之比是4:7,五月份甲车间提高生产效率,比四月份提高了25%,乙车间却比四月份少生产50个,这样五月份共生产1150个零件.求四月份甲乙两车间生产零件个数各多少个.
-参考答案-
一、单选题
1、A
【详解】
【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.
【详解】设的质量为x,的质量为y,的质量为:a,
假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,
故A选项错误,符合题意,
故选A.
【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.
2、D
【分析】
根据分式有意义的条件是分母不等于零进行分析即可.
【详解】
解:A、当a=0时,分式无意义,故此选项错误;
B、当a=−1时,分式无意义,故此选项错误;
C、当a=−1时,分式无意义,故此选项错误;
D、无论a为何值,分式都有意义,故此选项正确;
故选D.
【点睛】
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
3、D
【分析】
先把算式写成统一加号和的形式,再写成省略括号的算式即可.
【详解】
把统一加号和,
再把写成省略括号后的算式为 5-3+1-5.
故选:D.
【点睛】
本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键.
4、B
【分析】
先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
断.
【详解】
解:∵直径CD⊥弦AB,
∴弧AD =弧BD,
∴∠C=∠BOD.
故选B.
【点睛】
本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
5、A
【分析】
设中间的数字为x,表示出前一个与后一个数字,求出和即可做出判断.
【详解】
解:设日历中竖列上相邻三个数的中间的数字为x,则其他两个为x-7,x+7,
则三个数之和为x-7+x+x+7=3x,即三数之和为3的倍数.
故选:A.
【点睛】
本题考查列代数式,解题的关键是知道日历表中竖列上相邻三个数的特点.
6、C
【解析】
【分析】
根据不等式的性质分别对每一项进行分析,即可得出答案.
【详解】
A.∵a<b,根据不等式两边同时加上2,不等号方向不变,∴2+a<2+b,正确;
B.∵a<b,根据不等式两边同时加-5,不等号方向不变,∴a-5<b-5,正确;
C.∵a<b,根据不等式两边同时乘以-2,不等号方向改变,∴﹣2a>﹣2b,本选项不正确;
D.∵a<b,根据不等式两边同时乘以,不等号方向不变,∴<,正确.
故选C.
【点睛】
本题考查了不等式的性质,掌握不等式的性质是解决本题的关键;不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
7、D
【分析】
通过约分化简进行计算即可.
【详解】
原式=12a2b4•(﹣)·(﹣)
=36a.
故选D.
【点睛】
本题考点:分式的化简.
8、B
【详解】
试题解析:∵由数轴可得c<0<b<a,且a>|c|>b,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴①b+c>0,应为b+c<0,故不正确;
②a+b>a+c,正确;
③bc<ac,应为bc>ac,故不正确;
④ab>ac,正确.
共2个正确.
故选B.
考点:实数与数轴.
9、C
【分析】
先根据旋转的性质得∠CAE=60°,再利用三角形内角和定理计算出∠AFC=100°,然后根据邻补角的定义易得∠AFB=80°.
【详解】
∵△ABC绕点A顺时针旋转60°得△ADE,
∴∠CAE=60°,
∵∠C=20°,
∴∠AFC=100°,
∴∠AFB=80°.
故选C.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
10、B
【分析】
分析图形变化过程中的等量关系,求出变化后的长方形Ⅱ部分的长和宽即可.
【详解】
解:如图:
∵拼成的长方形的长为(a+b),宽为(a-b),
∴,解得a=25,b=5,
∴长方形Ⅱ的面积=b(a-b)=5×(25-5)=100.
故选B.
【点睛】
本题考查了完全平方公式(a+b)2=a2+2ab+b2的几何背景,解题的关键是找出图形等积变化过程中的等量关系.
二、填空题
1、
【分析】
首先利用锐角三角函数关系得出AC的长,再利用平移的性质得出地毯的长度.
【详解】
由题意可得:tan27°==≈0.51,解得:AC≈3.9,故AC+BC=3.9+2=5.9(m),即地毯的长度至少需要5.9米.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为5.9.
【点睛】
本题主要考查了解直角三角形的应用,得出AC的长是解题的关键.
2、
【分析】
根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值.
【详解】
解:,是的差倒数,
即,是的差倒数,
即,是的差倒数,
即,
…
依此类推,∵,
∴.
故答案为:.
【点睛】
本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.
3、(每两个3之间依次多一个“1”),
【分析】
无理数:即无限不循环小数,据此回答即可.
【详解】
解:,,
无理数有:(每两个3之间依次多一个“1”),
故答案为:(每两个3之间依次多一个“1”),.
【点睛】
此题考查了无理数的概念,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,(每两个之间一次多个)等形式.
4、70
【分析】
直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.
【详解】
解:依题意:2a+2b=14,ab=10,
则a+b=7
∴a2b+ab2=ab(a+b)=70;
故答案为:70
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.
5、6±
【详解】
解:∵a、b互为相反数,c、d互为倒数,x的绝对值为,
∴a+b=0,cd=1,x=±,
当x=时,原式=5+(0+1)×+0+1=6+;
当x=−时,原式=5+(0+1)×(−)+0+1=6−.
故答案为6±.
三、解答题
1、
【分析】
根据抛物线的顶点坐标设出,抛物线的解析式为:,再把代入,求出的值,即可得出二次函数的解析式.
【详解】
解:设抛物线的解析式为:,
把代入解析式得,
则抛物线的解析式为:.
【点睛】
本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式.
2、(1)t=;(2)y=−t2+6t(0<t<14);(3)t=;(4)
【分析】
(1)通过证明△CEM∽△BMP,可得,即可求解;
(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;
(3)由S△EHP=S△EMP,列出等式可求解;
(4)由对称性可得∠AEP=∠BEP,由角平分线的性质可得PF=PH,由面积关系可求解.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD,BC=AD
∵M是BC边的中点,
∴CM=BM=6cm,
∵,DE=9cm,
∴EC=5cm,
∵PM⊥EM,
∴∠PMB+∠CME=90°,
又∵∠BMP+∠BPM=90°,
∴∠BPM=∠EMC,
又∵∠B=∠C=90°,
∴△CEM∽△BMP,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴t=;
(2)∵四边形ABCD是矩形,
∴∠D=90°,
∴AE2=AD2+DE2,
∵AD=12cm,DE=9cm,
∴AE=cm,
∵ABCD,
∴∠DEA=∠EAB,
∴sin∠DEA=sin∠EAB,
∴,
∴,
∴HP=t,
∴AH==t,
∴HE=15−t,
∵S△EHP=×EH×HP,
∴y=(15−t)×t=−t2+6t(0<t<14);
(3)∵EP平分四边形PMEH的面积,
∴S△EHP=S△EMP,
∴(15−t)×t=×12×(5+14−t)−×6×(14−t)−×6×5,
解得:t1=,t2=
∵0<t<14,
∴t=;
(4)如图2,连接BE,过点P作PF⊥BE于F,
∵点B关于PE的对称点,落在线段AE上,
∴∠AEP=∠BEP,
又∵PH⊥AE,PF⊥BE,
∴PF=PH=t,
∵EC=5cm,BC=12cm,
∴BE=cm,
∵S△ABE=S△AEP+S△BEP,
∴×14×12=×(15+13)×t,
∴t=.
【点睛】
本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、
(1)
(2)
【分析】
(1)方程去括号、移项合并同类项,把x的系数化为1,即可求出解;
(2)方程去分母、去括号、移项合并同类项,把x的系数化为1,即可求出解.
(1)
解:去括号得:
移项、合并同类项得:
系数化为1,得:
(2)
解:去分母得:
去括号得:
移项、合并同类项得:
系数化为1,得:
【点睛】
本题考查解一元一次方程,解题的关键是掌握一元一次方程的解法,解一元一次方程常见的过程有:去分母、去括号、移项、合并同类项、系数化为1等.
4、B
【分析】
根据表格可知当时,,即可判断①,根据二次函数图象的对称性可知对称轴为,在对称轴左边随的增大而减小,在对称轴的右边随的增大而增大,即可判断②④,根据对称性可知和时的函数值相等,即可判断③,该函数存在两个函数值为0的点,则即可判断⑤.
【详解】
解:∵当时,,
∴该二次函数的图像经过原点,故①正确;
对称轴为,
方程ax2+bx+c=0有两个不相等的实数根,故⑤正确;
和时的函数值相等
即该二次函数的图像经过点(﹣1,3),故③正确
在对称轴左边即,随的增大而减小,在对称轴的右边即,随的增大而增大,
故②④不正确
故正确的是①③⑤
故选B
【点睛】
本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.
5、4月份甲乙两车间生产零件数400个,700个
【分析】
设4月份甲乙两车间生产零件数分别为4x个、7x个,则可得出五月份甲车间生产零件4x(1+25%),乙车间生产零件(7x﹣50),根据五月份共生产1150个零件,可得出方程,解出即可.
【详解】
解:设4月份甲乙两车间生产零件数分别为4x个、7x个,
由题意得,4x(1+25%)+7x﹣50=1150
解得:x=100
4x=400,7x=700.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
答:4月份甲乙两车间生产零件数400个,700个.
【点睛】
本题考查了一元一次方程的应用.解题的关键在于正确的列方程求解.
X
……
﹣2
0
2
3
……
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
Y
……
8
0
0
3
……
相关试卷
这是一份【历年真题】2022年河北石家庄市晋州市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知,,,则等内容,欢迎下载使用。
这是一份【历年真题】2022年石家庄晋州市中考数学真题模拟测评 (A)卷(含详解),共19页。试卷主要包含了把分式化简的正确结果为,下列解方程的变形过程正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年中考数学模拟测评 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了下列运算中,正确的是,计算的值为等内容,欢迎下载使用。