【真题汇总卷】2022年四川省遂宁市中考数学模拟真题练习 卷(Ⅱ)(含答案解析)
展开2022年四川省遂宁市中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为( )
A. B. C. D.
2、如图,,平分,于点,交于点,若,则的长为( )
A.3 B.4 C.5 D.6
3、的相反数是( )
A. B. C. D.3
4、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
5、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
6、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )
A.a≤2 B.a≤2且a≠0 C.a<2 D.a<2且a≠0
7、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )
A.3×106 B.3×107 C.3×108 D.0.3×108
8、下列计算正确的是( )
A. B.
C. D.
9、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
10、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47 B.62 C.79 D.98
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、近似数精确到____________位.
2、经过定点A、B的圆心轨迹是_____.
3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
4、若,则的值是______.
5、若,,则________.
三、解答题(5小题,每小题10分,共计50分)
1、计算
(1)
(2)
2、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:
售价x(元/件) | 40 | 45 |
月销售量y(件) | 300 | 250 |
月销售利润w(元) | 3000 | 3750 |
注:月销售利润=月销售量×(售价-进价)
(1)求y关于x的函数表达式;
(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.
3、已知二次函数的图像为抛物线C.
(1)抛物线C顶点坐标为______;
(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线,请判断抛物线是否经过点,并说明理由;
(3)当时,求该二次函数的函数值y的取值范围.
4、先化简,再求值:,其中.
5、如图,在离铁塔20m的A处,用测倾仪测得塔顶的仰角为53°,测倾仪高AD为1.52m.求铁塔高BC(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).
-参考答案-
一、单选题
1、C
【分析】
如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.
【详解】
解:如图连接OC,OD
∵
∴是等边三角形
∴
由题意知,
故选C.
【点睛】
本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.
2、D
【分析】
过作于,由题意可知,由角角边可证得,故,由直角三角形中30°的角所对的边是斜边的一半可知,再由等角对等边即可知.
【详解】
解:过作于,
,交于点,平分
,
,
,OP=OP
,
,
又,
,
故选:D.
【点睛】
本题考查了角平分线的性质,平行线的性质,全等三角形的判定及性质以及在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.两直线平行,内错角相等.
3、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
4、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
5、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
6、B
【分析】
根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案
【详解】
解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,
解得a≤2且a≠0.
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
7、B
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
解:30000000=3×107.
故选:B.
【点睛】
本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
8、D
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
9、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
10、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
二、填空题
1、百
【分析】
一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.
【详解】
解:∵104是1万,6位万位,0为千位,5为百位,
∴近似数6.05×104精确到百位;
故答案为百.
【点睛】
此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.
2、线段的垂直平分线
【分析】
根据到两点的距离相等的点在线段的垂直平分线上可得结论
【详解】
解:根据到两点的距离相等的点在线段的垂直平分线上可知,
经过定点A、B的圆心轨迹是线段的垂直平分线
故答案为:线段的垂直平分线
【点睛】
本题考查了垂直平分线的性质判定,理解题意是解题的关键.
3、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
4、
【分析】
根据绝对值、平方的非负性,可得 ,再代入即可求解.
【详解】
解:∵,
∴ ,
解得: ,
∴.
故答案为:
【点睛】
本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键.
5、12
【分析】
由变形为,再把和代入求值即可.
【详解】
解:,,
.
故答案为:12.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.
三、解答题
1、
(1)7;
(2).
【分析】
(1)先计算乘方,再计算乘除,去括号,再计算加减即可;
(2)先变带分数为假分数,把除变乘,利用乘法分配律简算,再计算加法即可.
(1)
解:,
=,
=,
=,
=7;
(2)
解:,
=,
=,
=,
=,
=.
【点睛】
本题考查含乘方的有理数混合运算,掌握运算法则,先乘方,再乘除,最后加减,有括号先算小括号,中括号,再大括号,能简算的可简算.
2、
(1)y=-10x+700
(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元
(3)
【分析】
(1)依题意设y=kx+b,用待定系数法得到结论;
(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;
(3)设利润为w′元,列出函数解析式,根据二次函数的性质求解.
(1)
解:设y=kx+b(k,b为常数,k≠0),
根据题意得:,
解得:,
∴y=-10x+700;
(2)
解:当该商品的进价是40-3000÷300=30元,
设当该商品的售价是x元/件时,月销售利润为w元,
根据题意得:w=y(x-30)=(x-30)(-10x+700)
=-10x2+1000 x-21000=-10(x-50)2+4000,
∴当x=50时w有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;
(3)
解:设利润为w′元,由题意得,
w′=y(x-30-m)
=(x-30-m)(-10x+700)
=-10x2+1000 x+10mx -21000-700m,
∴对称轴是直线x=,
∵-10<0,
∴抛物线开口向下,
∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,
∴,
解得m≥4,
∵,
∴.
【点睛】
本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.
3、
(1)
(2)不经过,说明见解析
(3)
【分析】
(1)一般解析式化为顶点式,进行求解即可.
(2)由题意得出平移后的函数表达式,将点横坐标2代入,求纵坐标的值并与3比较,相等则抛物线过该点.
(3)先判断该函数图像开口向上,对称轴在所求自变量的范围内,可求得函数值的最小值,然后将代入解析式求解,取最大的函数值,进而得出取值范围.
(1)
解:化成顶点式为
∴顶点坐标为
故答案为:.
(2)
解:由题意知抛物线的解析式为
将代入解析式解得
∴不经过点.
(3)
解:∵对称轴直线在中
∴最小的函数值
将代入解析式得
将代入解析式得
∵
∴函数值的取值范围为.
【点睛】
本题考查了二次函数值顶点式,图像的平移,函数值的取值范围等知识.解题的关键在于正确的表示出函数解析式.
4、,
【分析】
先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可.
【详解】
解:原式
当时,
原式.
【点睛】
本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则.
5、米
【分析】
如图,过作于 可得再利用求解 从而可得答案.
【详解】
解:如图,过作于
结合题意可得:四边形是矩形,
而
所以铁塔高BC为:米
【点睛】
本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建直角三角形,再利用锐角三角函数求解直角三角形的边长是解本题的关键.
【真题汇总卷】广西省桂林市中考数学模拟真题测评 A卷(含答案及解析): 这是一份【真题汇总卷】广西省桂林市中考数学模拟真题测评 A卷(含答案及解析),共23页。试卷主要包含了下列方程中,解为的方程是,如图,E,一元二次方程的根为.等内容,欢迎下载使用。
【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。
【真题汇总卷】2022年四川省成都市中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年四川省成都市中考数学模拟真题测评 A卷(含答案详解),共22页。试卷主要包含了下列二次根式中,不能与合并的是,若抛物线的顶点坐标为等内容,欢迎下载使用。