【真题汇总卷】2022年中考数学模拟测评 卷(Ⅰ)(含答案详解)
展开2022年中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、用四舍五入法按要求对0.7831取近似值,其中正确的是( )
A.0.783(精确到百分位) B.0.78(精确到0.01) C.0.7(精确到0.1) D.0.7830(精确到0.0001)
2、下列说法正确的是( )
A.的倒数是 B.的绝对值是
C.的相反数是 D.x取任意有理数时,都大于0
3、若分式有意义,则的取值范围是( )
A. B. C. D.
4、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A. B. C. D.
5、如图,三角形ABC绕点O顺时针旋转后得到三角形,则下列说法中错误的是( )
A. B. C. D.
6、下列各式的约分运算中,正确的是( )
A. B. C. D.
7、下列各题去括号正确的是( ).
A.(a-b)-(c+d)=a-b-c+d B.a-2(b-c)=a-2b-c
C.(a-b)-(c+d)=a-b-c-d D.a-2(b-c)=a-2b-2c
8、已知+=0,则a-b的值是( ) .
A.-1 B.1 C.-5 D.5
9、如图,是的边上的中线,,则的取值范围为( )
A. B. C. D.
10、分式方程有增根,则m为( )
A.0 B.1 C.3 D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小(填“>”或“<”): __________.
2、如图,、是线段上的两点,且是线段的中点.若,,则的长为______.
3、若,则________.
4、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,…依此类推,则_____.
5、已知,则= .
三、解答题(5小题,每小题10分,共计50分)
1、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,用某二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间r(月)之间的关系(即前t个月的利润总和s与t之间的关系).
(1)由已知图象上的三点坐标,,,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元.
2、如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣+bx+c经过A,C两点,与x轴的另一交点为B,点D是抛物线上一动点.
(1)求抛物线的解析式;
(2)在对称轴直线l上有一点P,连接CP,BP,则CP+BP的最小值为 ;
(3)当点D在直线AC上方时,连接BC,CD,BD,BD交AC于点E,令CDE的面积为S1,BCE的面积为S2,求的最大值;
(4)点F是该抛物线对称轴l上一动点,是否存在以点B,C,D,F为顶点的平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
3、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”.已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点.
(1)请写出:点的坐标为____________;点的坐标为____________;
(2)请求出经过点A、B、的二次函数解析式;
(3)请直接写出经过点A、B、的抛物线的表达式为____________.
4、掘土机挖一个工地,甲机单独挖12天完成,乙机单独挖15天完成.现在两台掘土机合作若干天后,再由乙机单独挖6天完成.问:甲乙两台掘土机合作挖了多少天?
5、若方程是关于的一元一次方程,求的值
-参考答案-
一、单选题
1、B
【分析】
精确到某一位,即对下一位的数字进行四舍五入;0.783(精确到千分位),0.7831(精确到0.1)是0.8.
【详解】
A. 0.783(精确到千分位), 所以A选项错误;
B、0.78(精确到0.01),所以B选项正确;
C、0.8(精确到0.1),所以C选项错误;
D、0.7831(精确到0.0001),所以D选项错误;
故选:B
【点睛】
本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.
2、C
【分析】
结合有理数的相关概念即可求解
【详解】
解:A:的倒数是,不符合题意;
B:的绝对值是2;不符合题意;
C:,5的相反数是,符合题意;
D:x取0时,;不符合题意
故答案是:C
【点睛】
本题主要考察有理数的相关概念,即倒数、绝对值及其性质、多重符号化简、相反数等,属于基础的概念理解题,难度不大.解题的关键是掌握相关的概念.
3、A
【解析】
试题解析:根据题意得:3-x≠0,
解得:x≠3.
故选A.
考点:分式有意义的条件.
4、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
5、A
【分析】
根据点O没有条件限定,不一定在AB的垂直平分线上,可判断A,根据性质性质可判断B、C、D.
【详解】
解:A.当点O在AB的垂直平分线上时,满足OA=OB,由点O没有限制条件,为此点O为任意的,不一定在AB的垂直平分线上,故选项A不正确,符合题意;
B.由旋转可知OC与OC′是对应线段,由旋转性质可得OC=OC′,故选项B正确,不符合题意;
C.因为、都是旋转角,由旋转性质可得,故选项C正确,不符合题意;
D.由旋转可知与是对应角,由性质性质可得,故选项D正确,不符合题意.
故选择A.
【点睛】
本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键.
6、D
【分析】
要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去.
【详解】
解:A、,故A错误;
B、,故B错误;
C、,故C错误;
D、,故D正确;
故选D.
【点睛】
本题主要考查了分式的约分,解题时注意:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
7、C
【分析】
根据去括号法则解答即可.
【详解】
、,此选项错误;
、,此选项错误;
、,此选项正确;
、,此选项错误.
故选:.
【点睛】
本题考查了去括号,属于基础题,关键是注意去括号时注意符号的改变.
8、C
【分析】
根据绝对值具有非负性可得a+2=0,b-3=0,解出a、b的值,然后再求出a-b即可.
【详解】
解:由题意得:a+2=0,b-3=0,
解得:a= -2,b=3,
a-b=-2-3=-5,
故选:C.
【点睛】
本题考查绝对值,关键是掌握绝对值的非负性.
9、C
【分析】
延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果.
【详解】
如图,延长至点E,使,连接.
∵为的边上的中线,
∴,
在和中,
∴,
∴.
在中,,
即,
∴,
故选:C.
【点睛】
本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键.
10、C
【分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的值,让最简公分母x−3=0,得到x=3,然后代入整式方程算出m的值.
【详解】
解:方程两边都乘x−3,得x+x-3=m
∵原方程有增根,
∴最简公分母x−3=0,
解得x=3,
将x=3代入x+x-3=m,得m=3,
故m的值是3.
故选C.
【点睛】
本题考查了分式方程的增根.增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
二、填空题
1、<.
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:∵ , , ,
∴ <.
故答案为:<.
【点睛】
本题考查有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
2、.
【分析】
利用已知得出AC的长,再利用中点的性质得出AD的长.
【详解】
解:∵AB=10cm,BC=4cm,
∴AC=6cm,
∵D是线段AC的中点,
∴AD=3cm.
故答案为:3cm.
【点睛】
此题主要考查了线段长度的计算问题与线段中点的概念,得出AC的长是解题关键.
3、
【分析】
根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可.
【详解】
解:根据题意,可得m的取值有三种,分别是:
当m>0时,则可转换为m=m+1,此种情况不成立.
当m=0时,则可转换为0=0+1,此种情况不成立.
当m<0时,则可转换为-m=m+1,解得,m=.
将m的值代入,则可得(4m+1)2011=[4×()+1]2011=-1.
故答案为:-1.
【点睛】
本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想.
4、
【分析】
根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值.
【详解】
解:,是的差倒数,
即,是的差倒数,
即,是的差倒数,
即,
…
依此类推,∵,
∴.
故答案为:.
【点睛】
本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.
5、.
【解析】
试题解析:设,则x=2k,y=3k,z=4k,则
=.
考点:分式的基本性质.
三、解答题
1、
(1)
(2)截止到10月末公司累积利润可达到30万元.
【分析】
(1)设,把,,代入,再列方程组解方程组可得答案;
(2)把代入,再解方程并检验即可得到答案.
(1)
解:设,把,,代入可得:
解得:
所以二次函数为:
(2)
解:把代入可得:
整理得:
解得:
经检验:不符合题意;
所以截止到10月末公司累积利润可达到30万元.
【点睛】
本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,掌握“待定系数法求解二次函数的解析式”是解本题的关键.
2、
(1)
(2)
(3)
(4)存在,(﹣,)或(﹣,)或(,)
【分析】
(1)根据一次函数得到,代入,于是得到结论;
(2)关于对称,当为与对称轴的交点时,CP+BP的最小值为:;
(3)令,解方程得到,,求得,过作轴于,过作轴交于于,根据相似三角形的性质即可得到结论;
(4)根据为边和为对角线,由平行四边形的性质即可得到点的坐标.
(1)
解:令,得,
令,得,
,,
抛物线经过.两点,
,
解得:,
;
(2)
解:关于对称,
当为与对称轴的交点时,
CP+BP的最小值为:,
由(1)得,,
,
CP+BP的最小值为:,
故答案是:;
(3)
解:如图1,过作轴交于,过作轴交于,
令,
解得:,,
,
,
,
,
设,
,
,
,
;
当时,的最大值是;
(4)
解:,
对称轴为直线,
设,,,
①若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
②若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
③若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
综上,的坐标为,或,或,.
【点睛】
本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,平行四边形的性质、方程思想及分类讨论思想,解题的关键是以为边或对角线分类讨论.
3、
(1)(1,2);(1,0)
(2)
(3)
【分析】
(1)根据旋转的性质得出,;
(2)利用待定系数法进行求解解析式即可;
(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.
(1)
解:根据题意作下图:
根据旋转的性质得:,,
,,
故答案是:(1,2);(1,0);
(2)
解:设过点A、B、的二次函数解析式为:,
将点分别代入中得:
,
解得:,
;
(3)
解:设过点A、B、的二次函数解析式为:,
将点分别代入中得:
,
解得:,
;
故答案为:.
【点睛】
本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式.
4、甲乙两台掘土机合作挖了4天.
【分析】
设甲乙两台掘土机合作挖了天,则甲乙合作的工作量为乙机单独挖6天完成的工作量为 再结合两部分的工作量之和等于1列方程,解方程即可.
【详解】
解:设甲乙两台掘土机合作挖了天,则
整理得:
解得:
答:甲乙两台掘土机合作挖了4天.
【点睛】
本题考查的是一元一次方程的应用,掌握“工作时间乘以工作效率等于工作量”是解本题的关键.
5、13或43
【分析】
由题意知,求解后将值代入代数式求解即可.
【详解】
解:由题意知:
∴
或
解得或
①当时,
②当时,
∴原式的值为13或43.
【点睛】
本题考查了方程的次数,求解绝对值,代数式求值等知识.解题的关键在于正确的理解次数的含义与去绝对值.
【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解),共27页。试卷主要包含了是-2的 .,如果,且,那么的值一定是 .等内容,欢迎下载使用。
【真题汇总卷】2022年唐山滦州市中考数学模拟专项测评 A卷(含答案及详解): 这是一份【真题汇总卷】2022年唐山滦州市中考数学模拟专项测评 A卷(含答案及详解),共32页。试卷主要包含了在解方程时,去分母正确的是,如果,那么的取值范围是等内容,欢迎下载使用。
【真题汇总卷】2022年天津市中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年天津市中考数学模拟测评 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。