2020-2021学年第25章 投影与视图综合与测试练习题
展开
这是一份2020-2021学年第25章 投影与视图综合与测试练习题,共20页。试卷主要包含了如图所示的礼品盒的主视图是,下列立体图形的主视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,该几何体的俯视图是A. B.C. D.2、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB=10,BE=3,则AB在直线m上的正投影的长是( )A.5 B.4 C.3+4 D.4+43、已知一个几何体如图所示,则该几何体的左视图是( )A. B. C. D.4、下列四个几何体中,主视图与俯视图不同的几何体是( )A. B.C. D.5、如图所示的礼品盒的主视图是( )A. B. C. D.6、中国有悠久的金石文化,印信是金石文化的代表之一.南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是( )A. B. C. D.7、下列几何体中,俯视图为三角形的是( )A. B. C. D.8、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.2 B.4 C.6 D.89、下列立体图形的主视图是( )A. B. C. D.10、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个几何体的三视图(图中尺寸单位:),根据图中所示数据计算该几何体的底面周长为______.2、如图是一个几何体的三视图,则这个几何体的表面积为__.3、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.4、如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____.5、圆锥的母线长为5,侧面展开图的面积为20π,则圆锥主视图的面积为_________.三、解答题(5小题,每小题10分,共计50分)1、补全如图的三视图. 2、补全如图立体图形的三视图.3、如图,在平整的地面上,若干个棱长都为的小正方体堆成一个几何体.(1)在网格中,用实线画出从正面,上面,左面看到的形状图;(2)求这个几何体的体积和表面积.4、如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.5、一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积. -参考答案-一、单选题1、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.【详解】解:根据题意得:D选项是该几何体的俯视图.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.2、C【分析】根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明△ACD∽△CBE,再根据相似三角形的性质可得CD的长,进而得出DE的长.【详解】解:在Rt△ABC中,∠ABC=30°,AB=10,∴AC=AB=5,BC=AB•cos30°=10×,在Rt△CBE中,CE=,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∴Rt△ACD∽Rt△CBE,∴,∴CD=,∴DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C.【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.3、B【分析】根据几何体左视图的概念求解即可.【详解】解:由左视图的概念可得,这个几何体的左视图为:.故选:B.【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念.左视图,一般指由物体左边向右做正投影得到的视图.4、C【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A、正方体的主视图与俯视图都是正方形,选项不符合题意;B、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D、球体的主视图与俯视图都是圆形,故不符合题意.故选:C.【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.5、B【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从礼品盒的正面看,可得图形:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.6、D【分析】找到从正面看所得到的图形即可.【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.7、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、B【分析】根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△FDC,∴,即DC2=ED•FD=2×8=16,解得CD=4m.故选:B.【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.9、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10、C【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.二、填空题1、4πcm.【分析】根据主视图是等腰三角形,利用等腰三角形的性质,勾股定理求得底边的长,这就是圆锥底面圆的直径,计算周长即可.【详解】如图,根据主视图的意义,得三角形是等腰三角形,∴三角形ABC是直角三角形,BC==2,∴底面圆的周长为:2πr=4πcm.故答案为:4πcm.【点睛】本题考查了几何体的三视图,熟练掌握圆锥的三视图及其各视图的意义是解题的关键.2、4π【分析】先判定这个几何体是圆锥,再根据圆锥的特点求出其表面积.【详解】解:根据三视图可得这个几何体是圆锥,底面积=π×12=π,侧面积为==3π,则这个几何体的表面积=π+3π=4π;故答案为:4π.【点睛】此题主要考查圆锥的表面积,解题的关键是根据三视图的得到几何体是圆锥.3、15【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块.m+n=15,故答案为:15【点睛】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.4、故答案为: 【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.【分析】根据主视图是边长为10cm 的正方形,可知圆柱的高为10cm,底面的直径为10cm,据此即可求出侧面积.【详解】解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,∴圆柱体的底面直径和高为10cm,∴侧面积为,故答案为:.【点睛】本题主要考查的是立体图形中的展开图,并进行面积计算,掌握立体图形的展开形式是解题的关键.5、12【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=πrl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可.【详解】解:根据圆锥侧面积公式:S=πrl,圆锥的母线长为5,侧面展开图的面积为20π,故20π=π×5×r,解得:r=4.由勾股定理可得圆锥的高∴圆锥的主视图是一个底边为8,高为3的等腰三角形,∴它的面积=,故答案为:12.【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.三、解答题1、见解析【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.【详解】解:如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法.2、见解析【分析】根据简单几何体的三视图的画法,画出相应的图形即可,注意看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.【详解】解:补全这个几何体的三视图如下:.【点睛】本题考查了简单几何体的三视图,理解视图的意义,掌握简单几何体的三视图的画法是正确解答的前提.3、(1)见解析;(2),【分析】(1)根据三视图的定义画出图形即可.(2)分前后,左右,上下三个方向统计正方形的个数即可求出表面积,根据个数即可得出体积.【详解】解:(1)该几何体从正面、上面、左面看到的形状图如图:(2)因为该几何体由8个棱长都为的正方体堆成,每个正方体的体积都为,所以其体积为;该几何体前后各有4个小正方形,上下各有6个小正方形,左右各有5个小正方形,每个小正方形的面积为,所以其表面积为.【点睛】本小题考查几何体、三视图等基础知识,考查空间观念与几何直观,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1)见详解;(2)旗杆DE的高度为9m.【分析】(1)连接AC,然后根据投影相关知识可进行作图;(2)由(1)可知∠ACB=∠DFE,然后易得△ABC∽△DEF,进而根据相似三角形的性质可求解.【详解】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影,如图所示:(2)∵DF∥AC,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴,∵AB=3m,BC=2m,EF=6m,∴,∴DE=9m;答:旗杆DE的高度为9m.【点睛】本题主要考查相似三角形的性质与判定及投影,熟练掌握相似三角形的性质与判定及投影是解题的关键.5、(1)圆柱体;(2)这个几何体的表面积为;(3)这个几何体的体积为.【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=;(3)这个圆柱的体积=底面积×高=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.
相关试卷
这是一份初中数学第25章 投影与视图综合与测试综合训练题,共18页。试卷主要包含了下面的三视图所对应的几何体是,如图所示的支架等内容,欢迎下载使用。
这是一份沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共20页。试卷主要包含了图1等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课后作业题,共19页。试卷主要包含了下列物体中,三视图都是圆的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。