










所属成套资源:北师大版初中数学七年级下册 知识讲解+练习(基础和提高)(word版)
初中数学北师大版七年级下册4 用尺规作三角形达标测试
展开
这是一份初中数学北师大版七年级下册4 用尺规作三角形达标测试,文件包含用尺规作三角形及三角形全等应用基础巩固练习doc、用尺规作三角形及三角形全等应用基础知识讲解doc、用尺规作三角形及三角形全等应用提高巩固练习doc、用尺规作三角形及三角形全等应用提高知识讲解doc等4份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
用尺规作三角形及三角形全等应用(基础)【要点梳理】要点一、基本作图
1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:
尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.常见基本作图常见并经常使用的基本作图有:1.作一条线段等于已知线段;2.作一个角等于已知角;3.作角的平分线;4.作线段的垂直平分线;5.作三角形.要点诠释:1.要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达;2.第3、4条基本作图,在第5章再详细叙述,本节重点叙述其他三个基本作图.要点二、三角形全等的实际应用在现实生活中,有很多问题需要用全等三角形的知识来解决.【典型例题】类型一、基本作图1、作图:已知线段a、b,画一条线段使它等于2a﹣b.(要求:用尺规作图,并写出已知、求作、结论,保留作图痕迹,不写作法)已知:求作:结论: 【思路点拨】可先画出一条线段等于2a,然后再在这条线段上截去b,剩余线段即为所求线段.【答案与解析】解:已知:线段a、b,求作:线段AC,使线段AC=2a﹣b. 【总结升华】本题考查有关线段的基本作图,相加在原来线段的延长线上画出另一条线段,相减在较长的线段上截去.举一反三:【变式】如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是( ) A.以点C为圆心,OD为半径的弧 B. 以点C为圆心,DM为半径的弧 C.以点E为圆心,OD为半径的弧 D. 以点E为圆心,DM为半径的弧【答案】D.类型二、作三角形2、已知∠α和线段a和b,作一个三角形,使其中一个角等于∠α,且这个角的两边长分别为a和b.(要求:用尺规作图,并写出已知、求作、保留作图痕迹)已知:求作: 【思路点拨】先作∠ACB=∠α,然后以点C为圆心,以a长为半径画弧,与边BC相交于点B,再以点C为圆心,以b的长为半径画弧与CA相交于点A,连接AB即可得解.【解析】解:已知:∠α,线段a,b,求作:△ABC,是∠C=∠α,BC=a,AC=b,如图所示,△ABC即为所求作的三角形.【总结升华】本题考查了复杂作图,主要利用了作一个角等于已知角,作一条线段等于已知线段,都是基本作图,需熟练掌握.举一反三:【变式】已知∠α及线段b,作一个三角形,使得它的两内角分别为α和,且两角的夹边为b.(要求:用尺规作图,并写出已知、求作和结论,保留作图痕迹,不写作法)已知:求作:结论:【答案】解:已知:∠α,线段b;求作:△ABC,使得∠B=α,∠C=α,BC=b.结论:如图,△ABC为所求. 类型三、三角形全等的实际应用3、如图所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E、M、F,M恰好为BC的中点,且E、F、M在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B、E之间的距离,你能想出解决的方法吗?请说明其中的道理.【思路点拨】先根据SAS判定△BEM≌△CFM,从而得出CF=BE,即测量BE之间的距离相当于测量CF之间的距离.【答案与解析】解:能.证明:连接EF∵AB∥CD,(已知)∴∠B=∠C(两线平行内错角相等).∵M是BC中点 ∴BM=CM,在△BEM和△CFM中,∴△BEM≌△CFM(SAS).∴CF=BE(对应边相等).【总结升华】本题考查了全等三角形的应用;关键是要把题目的问题转化为证明对应边相等.举一反三【变式】要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( )A.边角边 B.角边角 C.边边边 D.边边角【答案】B.4、为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?【思路点拨】利用全等三角形的判定方法得出△CPD≌△PAB(ASA),进而得出AB的长.【答案与解析】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33﹣8=25(m),答:楼高AB是25米.【总结升华】此题主要考查了全等三角形的应用,正确把握全等三角形的判定方法是解题关键.举一反三【变式】小明不慎将一块三角形的玻璃摔碎成如右图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( ) A.第4块 B. 第3块 C. 第2块 D.第1块【答案】C.
相关试卷
这是一份北师大版七年级下册4 用尺规作三角形随堂练习题,共5页。
这是一份初中数学北师大版七年级下册第四章 三角形4 用尺规作三角形课后练习题,共5页。试卷主要包含了下列作图属于尺规作图的是,下列尺规作图的语句正确的是,【答案】没有刻度的直尺和圆规;等内容,欢迎下载使用。
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称1 轴对称现象课后作业题,文件包含轴对称巩固练习doc、轴对称知识讲解doc等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
