搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向攻克试题(含解析)

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向攻克试题(含解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向攻克试题(含解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向攻克试题(含解析)第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步测试题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步测试题,共30页。
    沪科版九年级数学下册第24章圆定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )

    A. B. C. D.
    2、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )

    A. B. C. D.
    3、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    4、下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B. C. D.
    5、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )

    A.1cm B.2cm C.3cm D.4cm
    6、如图,A,B,C是正方形网格中的三个格点,则是( )

    A.优弧 B.劣弧 C.半圆 D.无法判断
    7、下列图形中,是中心对称图形也是轴对称图形的是(  )
    A. B. C. D.
    8、如图,AB,CD是⊙O的弦,且,若,则的度数为( )

    A.30° B.40° C.45° D.60°
    9、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    10、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    2、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.

    3、在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > AB;④AB < DE < AB.
    4、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.

    5、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.

    (1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
    (2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
    (3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
    2、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
    3、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.
    (1)求证:AD∥EC;
    (2)若AD=6,求线段AE的长.

    4、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)

    5、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.

    (1)求证:弧AD=弧CD;
    (2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.

    -参考答案-
    一、单选题
    1、C
    【分析】
    过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
    【详解】
    解:如图,过点A作AC⊥x轴于点C,

    设 ,则 ,
    ∵ ,,
    ∴,
    ∵, ,
    ∴ ,
    解得: ,
    ∴ ,
    ∴ ,
    ∴点 ,
    ∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
    ∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
    故选:C
    【点睛】
    本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
    2、B
    【分析】
    由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.
    【详解】
    解:根据题意,如图:

    ∵AB是的直径,OD是半径,,
    ∴AE=CE,
    ∴阴影CED的面积等于AED的面积,
    ∴,
    ∵,,
    ∴,
    ∴;
    故选:B
    【点睛】
    本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.
    3、B
    【分析】
    由题意易得,然后根据三角形外角的性质可求解.
    【详解】
    解:由旋转的性质可得:,
    ∴;
    故选B.
    【点睛】
    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
    4、B
    【分析】
    根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
    【详解】
    解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
    B、是中心对称图形但不是轴对称图形,故符合题意;
    C、既不是轴对称图形也不是中心对称图形,故不符合题意;
    D、是轴对称图形但不是中心对称图形,故不符合题意;
    故选B.
    【点睛】
    本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
    5、B
    【分析】
    连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.
    【详解】
    解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:

    ∵AB=8cm,
    ∴BD=AB=4(cm),
    由题意得:OB=OC==5cm,
    在Rt△OBD中,OD=(cm),
    ∴CD=OC-OD=5-3=2(cm),
    即水的最大深度为2cm,
    故选:B.
    【点睛】
    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    6、B
    【分析】
    根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
    【详解】
    解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.

    故选:B.
    【点睛】
    本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
    7、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;
    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;
    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.
    故选:C.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    8、B
    【分析】
    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
    9、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    10、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    二、填空题
    1、
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    2、65
    【分析】
    根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
    【详解】
    解:∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴,
    ∵∠APO=25°,
    ∴,
    故答案为:65.
    【点睛】
    本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    3、②④
    【分析】
    将所给四个条件逐一判断即可得出结论.
    【详解】
    解:在中,
    ①当∠BAC > 60°时,若时,点E与点A重合,不符合题意,故①不满足;
    ②当∠ABC时,点E与点A重合,不符合题意,当∠ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,
    所以,当45° < ∠ABC < 60°时,点E关于直线AD的对称点在线段OA上,故②满足条件;
    ③当时,点E关于直线AD的对称点在线段OA上,故③不满足条件;
    ④当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故④满足条件;
    所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或AB < DE < AB
    故答案为②④
    【点睛】
    本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.
    4、3
    【分析】
    过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.
    【详解】
    解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,
    ∵=, AB=10,
    ∴∠ACB=∠B=∠D,AB=AC=10,
    ∵AE⊥BC,BC=12,
    ∴BE=CE=6,
    ∴,
    ∵∠B=∠D,∠AEB=∠CFD=90°,
    ∴△ABE∽△CDF,
    ∴,
    ∵AB=10,CD=5,BE=6,AE=8,
    ∴,
    解得:DF=3,CF=4,
    在Rt△AFC中,∠AFC=90°,AC=10,CF=4,
    则,
    ∴AD=DF+AF=3+2,
    故答案为:3+2.

    【点睛】
    本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.
    5、相切或相交
    【详解】
    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.
    【分析】
    解:∵x2﹣5x+6=0,
    (x﹣2)(x﹣3)=0,
    解得:x1=2,x2=3,
    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,
    ∴当半径为2时,直线l与圆O的的位置关系是相切,
    当半径为3时,直线l与圆O的的位置关系是相交,
    综上所述,直线l与圆O的的位置关系是相切或相交.
    故答案为:相切或相交.
    【点睛】
    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.
    三、解答题
    1、
    (1)135°
    (2)∠MOP-∠NOQ=30°,理由见解析
    (3)s或s.
    【分析】
    (1)先根据OP平分得到∠PON,然后求出∠BOP即可;
    (2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
    (3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
    (1)
    解:∵OP平分∠MON
    ∴∠PON=∠MON=45°
    ∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
    故答案是135°
    (2)
    解:∠MOP-∠NOQ=30°,理由如下:
    ∵∠MON=90°,∠POQ=60°
    ∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
    ∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
    (3)
    解:∵射线OC平分,射线OD平分
    ∴∠NOC=45°,∠POD=30°
    ∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
    ∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
    ∴此时OC与OE的夹角165-(180-45-2×33)=96°
    OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
    设在OC与OD第二次相遇前,当时,需要旋转时间为t
    ①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
    ②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
    然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
    ∵C、D第二次相遇需要时间72秒
    ∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.

    【点睛】
    本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
    2、(1)①③;(2)点N的横坐标;(3)或.
    【分析】
    (1)在坐标系中作出圆及三个函数图象,即可得;
    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
    【详解】
    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;
    (2)如图所示:

    ∵直线l是的关联直线,
    ∴直线l的临界状态是与相切的两条直线和,
    当临界状态为时,连接TM,
    ∴,,
    ∵当时,,
    当时,,
    ∴,
    ∴为等腰直角三角形,
    ∴,

    ∴点,
    同理可得当临界状态为时,
    点,
    ∴点N的横坐标;
    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;

    设点,直线HB的解析式为,直线HD的解析式为,
    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最大值为,
    ②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
    设点,直线HB的解析式为,直线HD的解析式为,

    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最小值为,
    ③当时,两条直线与圆无公共点,不符合题意,
    ∴,
    综上可得:或.
    【点睛】
    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
    3、(1)见解析;(2)6
    【分析】
    (1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;
    (2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.
    【详解】
    证明:(1)连接OC,

    ∵CE是⊙O的切线,
    ∴∠OCE=,
    ∵∠ABC=,
    ∴∠AOC=2∠ABC=,
    ∵∠AOC+∠OCE=,
    ∴AD∥EC;
    (2)解:过点A作AF⊥EC交EC于点F,
    ∵∠AOC=,OA=OC,
    ∴∠OAC=,
    ∵∠BAC=,
    ∴∠BAD=,
    ∵AD∥EC,
    ∴,
    ∵∠OCE=,∠AOC=,∠AFC=90°,
    ∴四边形OAFC是矩形,
    ∵OA=OC,
    ∴四边形OAFC是正方形,
    ∴,
    ∵,
    ∴,
    在Rt△AFE中,,
    ∴AE=2AF=6.
    【点睛】
    本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.
    4、见解析
    【分析】
    先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
    【详解】
    如图,直线AB就是所求作的,
    (作法不唯一,作出一条即可,需要有作图痕迹)

    【点睛】
    本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    5、(1)见解析;(2)CD=,EF=1.
    【分析】
    (1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.
    (2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.
    【详解】
    (1)解:连结OC.


    ∴∠1=∠B
    ∠2=∠C
    ∵OB =OC
    ∴∠B=∠C
    ∴∠1=∠2
    ∴弧AD=弧CD
    (2)∵AB是的直径
    ∴∠ACB=90°

    ∴∠AEO=∠ACB=90°
    Rt△ABC中,∠ACB=90°,
    ∵BC=6,AB=10
    ∴AC=8
    ∵半径OD⊥AC于E
    ∴EC=AE=4
    OE=
    ∴ED=2
    由勾股定理得,CD=

    ∴△EDF∽△CBF

    设EF=x,则FC=4-x

    ∴EF=1,经检验符合题意.

    【点睛】
    本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共20页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是,下列四幅图的质地大小,下列事件中,属于不可能事件的是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共29页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份沪科版九年级下册第24章 圆综合与测试一课一练,共30页。试卷主要包含了下列图形中,是中心对称图形的是,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map