![2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测试试题第1页](http://img-preview.51jiaoxi.com/2/3/12682830/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测试试题第2页](http://img-preview.51jiaoxi.com/2/3/12682830/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测试试题第3页](http://img-preview.51jiaoxi.com/2/3/12682830/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共30页。
沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A.30° B.60°C.90° D.120°2、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )A.4 B.6 C.8 D.103、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )A.8 B. C. D.4、计算半径为1,圆心角为的扇形面积为( )A. B. C. D.5、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.6、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )A.20 m B.20mC.(20 - 20)m D.(40 - 20)m7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π8、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.(2)作直线GH交AB于点E.(3)在直线GH上截取.(4)以点F为圆心,AF长为半径画圆交CD于点P.则下列说法错误的是( ) A. B. C. D.9、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )A.3 B.2 C.1 D.10、如图,是的直径,弦,垂足为,若,则( )A.5 B.8 C.9 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.2、点(2,-3)关于原点的对称点的坐标为_____.3、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.4、如果点与点B关于原点对称,那么点B的坐标是______.5、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.三、解答题(5小题,每小题10分,共计50分)1、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.2、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.3、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案)4、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.5、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长. -参考答案-一、单选题1、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.2、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∴ ,∵∠BAC=30°,BC=2,∴. 故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.3、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.4、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.5、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC ⊥,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,∴OC=CB=CP=20,∴OP=40,OB==,∴最小的距离PE=PO-OE=40 - 20(m),故选D.【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴,故A正确;∵CD是的高,∴,故B正确;∵,,∴,故C错误;∵,∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.9、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图∵AB 为⊙O 的直径,CDAB,垂足为点 E,CD=8,∴,∵,∴,∴;故选:B.【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.10、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,∵是的直径,弦,∴设的半径为,则在中,,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、【分析】分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.【详解】解:当点P与点O重合时,∵OA=OC,∴,即;当点P与点B重合时,∵AB是的直径,∴,∴x的取值范围是.【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.2、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.【详解】点(2,-3)关于原点的对称点的坐标是(-2,3). 故答案为: (-2,3).【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.3、##【分析】先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,∴令,则;令,则,∴点A为(2,0),点B为(0,4),∴,;过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,∴,∴,∴,∵,∴△ABF是等腰直角三角形,∴AF=AB,∴△ABO≌△FAE(AAS),∴AO=FE,BO=AE,∴,,∴,∴点F的坐标为(,);设直线BC为,则,解得:,∴直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.4、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.5、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:; 依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为;内切圆半径面积公式:,即为;所以,可得:,所以直径为:;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;三、解答题1、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.【分析】(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF.理由:延长FD至G,使DG=BE,连接AG,如图①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE.理由:在DC上截取DH=BE,连接AH,如图②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,∵K为BC边的中点,∴CK=BC=2,同理可证△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.综上,线段EF的长为或.【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.2、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,,又即(3)证明如下,如图,过点作,又,又,即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.3、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OC,∵OA=OC,∴∠CAB=∠ACO,∵∠FAC=∠BAC,∴∠FAC=∠ACO,∴AF//OC,∴∠AFC+∠OCF=180°,∵CF⊥AF,∴∠OCF=90°,即OC⊥CF,∴CF是⊙O的切线.(2)在△AFC和△AEC中,,∴△AFC≌△AEC,∴S△AFC=S△AEC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE,∴S△BCD=2S△BCE,∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA,∵sin∠CAB=,∴sin∠CAB=sin∠BCE=,∴BE=,AB=,∴AE=,∴====.故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.4、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OC,∵CE是⊙O的切线,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:过点A作AF⊥EC交EC于点F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四边形OAFC是矩形,∵OA=OC,∴四边形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.5、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案【详解】解:(1)连接OB,∵AB是⊙O的切线,∴OB⊥AB,即∠ABO=90°,∵BC是弦,OA⊥BC,∴CE=BE,∴AC=AB,在△AOB和△AOC中,,∴△AOB≌△AOC(SSS),∴∠ACO=∠ABO=90°,即AC⊥OC,∴AC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD==2,∵sinD==,⊙O半径为2,OD=4.∴=,解得AC=2,∴AD=BD+AB=4.【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共32页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份2020-2021学年第24章 圆综合与测试课后复习题,共27页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。
这是一份九年级下册第24章 圆综合与测试测试题,共35页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)