![2021-2022学年度沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12682872/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12682872/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第24章圆单元测试试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12682872/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试单元测试课时练习
展开
这是一份沪科版九年级下册第24章 圆综合与测试单元测试课时练习,共32页。试卷主要包含了下列图形中,是中心对称图形的是,在圆内接四边形ABCD中,∠A,将一把直尺等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,CD是的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.(2)作直线GH交AB于点E.(3)在直线GH上截取.(4)以点F为圆心,AF长为半径画圆交CD于点P.则下列说法错误的是( ) A. B. C. D.2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A.45° B.60° C.90° D.120°3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的4、下列图形中,是中心对称图形的是( )A. B.C. D.5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°6、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )A.25° B.80° C.130° D.100°7、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )A.5 B. C. D.8、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )A.140° B.100° C.80° D.40°9、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A.6 B. C.3 D.10、下列判断正确的个数有( )①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.3、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.4、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.三、解答题(5小题,每小题10分,共计50分)1、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是 对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.2、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求a的值;(2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;(3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.3、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.4、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.5、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长交于点,延长交于点;②分别连接,并延长相交于点;③连接并延长交于点.所以线段即为中边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵是的直径,点,在上,∴________°.(______)(填推理的依据)∴,.∴,________是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高. -参考答案-一、单选题1、C【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴,故A正确;∵CD是的高,∴,故B正确;∵,,∴,故C错误;∵,∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.2、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β; ∵四边形ABCO是菱形, ∴∠ABC=∠AOC; ∠ADC=β; 四边形为圆的内接四边形,α+β=180°, ∴ , 解得:β=120°,α=60°,则∠ADC=60°, 故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.3、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.4、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.5、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OF,OE,OG,∵AB、BC、CD分别与相切,∴,,,且,∴OB平分,OC平分,∴,,∵,∴,∴,∴,,∴,∴,故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.8、C【分析】,,,进而求解的值.【详解】解:由题意知∵∴∴∵∴故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.9、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.【详解】解:如图所示,设圆的圆心为O,连接OC,OB,∵AC,AB都是圆O的切线,∴∠OCA=∠OBA=90°,OC=OB,又∵OA=OA,∴Rt△OCA≌Rt△OBA(HL),∴∠OAC=∠OAB,∵∠DAC=60°,∴,∴∠AOB=30°,∴OA=2AB=6,∴,∴圆O的直径为,故选D.【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.10、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.二、填空题1、2【分析】连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.【详解】解:连接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案为:2.【点睛】本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.2、3【分析】由切线长定理和,可得为等边三角形,则.【详解】解:连接,如下图:,分别为的切线,,为等腰三角形,,,为等边三角形,,,.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.3、【分析】如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.【详解】解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,∵四边形BCDE是正方形,∴∠BCD=∠CBE=90°,CD=BC=BE=DE,∵OB=OC,∴∠OCB=∠OBC,∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,∴△OCD≌△OBE(SAS),∴OE=OD,根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,∵∠MCB=∠MOB=×90°=45°,∴∠DCM=∠BCM=45°,∵四边形BCDE是正方形,∴C、M、E共线,∠DEM=∠BEM,在△EMD和△EMB中,,∴△MED≌△MEB(SAS),∴DM=BM===2(cm),∴OD的最大值=2+2,即OE的最大值=2+2;故答案为:(2+2)cm.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.4、70°度【分析】连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OA、OB,∵PA,PB分别切⊙O于点A,B,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=∠AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.5、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与⊙O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.2、(1)(2)(3)【分析】(1)先求得,点的坐标,进而根据即可求得的值;(2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;(3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可.(1)令,解得令,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线与轴的交点为解得(2)如图,过点作轴于点,是直角三角形,且又在抛物线上,整理得解得(舍)在第三象限,(3)如图,连接,取的中点,连接,是的中位线根据题意点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,当三点共线,且在的延长线上时,最大,如图,即设直线的解析式为,代入点,即解得直线的解析式为设直线的解析式为解得则的解析式为设点,,解得(舍去)【点睛】本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键.3、见解析【分析】由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.4、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=.【详解】解:(1)如图所示,连接OA,∵∠CBA=45°,∴∠COA=90°, ∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上, ∴AD是⊙O的切线; (2)连接OB,过点O作OE⊥AB,垂足为E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°, 由(1)证可得∠AOC=90°,∴∠AOB=120°, ∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE, 在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1, 由勾股定理可得,,∴AB=.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.5、(1)见详解;(2)90,直径所对的圆周角是直角,BD.【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解.【详解】解:(1)如图,CH为△ABC中AB边上的高;(2)证明:∵是的直径,点,在上,∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)∴,.∴,_BD__是的两条高线.∵,所在直线交于点,∴直线也是的高所在直线.∴是中边上的高.故答案为:90,直径所对的圆周角是直角,BD.【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共28页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共35页。试卷主要包含了点P关于原点O的对称点的坐标是,在圆内接四边形ABCD中,∠A,下列叙述正确的有个.等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试综合训练题,共30页。试卷主要包含了如图,点A等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)