搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪科版九年级数学下册第24章圆综合测评练习题(精选)

    2021-2022学年度沪科版九年级数学下册第24章圆综合测评练习题(精选)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆综合测评练习题(精选)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆综合测评练习题(精选)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试课时训练

    展开

    这是一份初中数学第24章 圆综合与测试课时训练,共29页。试卷主要包含了如图,是的直径,,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是(      A.2个 B.3个 C.4个 D.5个2、如图,DC是⊙O的直径,弦ABCDM,则下列结论不一定成立的是(    )A.AM=BM B.CM=DM C. D.3、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点AB的对应点分别为DE,连接AD.当点ADE在同一条直线上时,则∠BAD的大小是(  )A.80° B.70° C.60° D.50°4、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(    A.相离 B.相切 C.相交 D.相交或相切5、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(    A.  B. C.  D.6、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(    A. B. C. D.7、计算半径为1,圆心角为的扇形面积为(    A. B. C. D.8、如图,的直径,上的两点,若,则    A.15° B.20° C.25° D.30°9、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定10、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )A. B.C. D.(﹣2,0)或(﹣5,0)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.2、圆锥的母线长为,底面圆半径为r,则全面积为______.3、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.4、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.5、如图所示,AB是⊙O的直径,弦CDABH,∠A=30°,OH=1,则⊙O的半径是______.三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,,点分别在边上,,连接.点在线段上,连接于点(1)①比较的大小,并证明;②若,求证:(2)将图1中的绕点逆时针旋转,如图2.若的中点,判断是否仍然成立.如果成立,请证明;如果不成立,请说明理由.2、如图,AB为⊙O的切线,B为切点,过点BBCOA,垂足为点E,交⊙O于点C,连接CO并延长COAB的延长线交于点D,连接AC(1)求证:AC为⊙O的切线;(2)若⊙O半径为2,OD=4.求线段AD的长.3、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E(1)求证:ADEC(2)若AD=6,求线段AE的长.4、如图1,BC是⊙O的直径,点AP在⊙O上,且分别位于BC的两侧(点AP均不与点BC重合),过点A AQAP,交PC 的延长线于点QAQ交⊙O于点D,已知AB=3,AC=4.(1)求证:△APQ∽△ABC(2)如图2,当点C的中点时,求AP的长.(3)连结AOOD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.5、如图,AB是⊙O的直径,点C是⊙O上一点连接BC,半径ODBC(1)求证:弧AD=弧CD(2)连接AC、BD相交于点FACOD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CDEF的长. -参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦ABCDCD过圆心OAM=BM即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CMDM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.3、A【分析】根据三角形旋转得出,根据点ADE在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到∴∠ADC=∠DAC∵点ADE在同一条直线上,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.4、B【分析】圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解:O的直径为10cm,圆心O到直线l的距离为5cm,  O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A【分析】连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.【详解】解:连结OC∵以边上一点为圆心作,恰与边分别相切于点A, DC=ACOC平分∠ACD∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×在Rt△AOC中,∠ACO=30°,AO=ACtan30°=OD=OA=1,DC=AC=∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,S阴影=故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.7、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.8、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=BOC=65°,AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr10、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线x轴于点A,交y轴于点B∴令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设⊙P与直线AB相切于D连接PDPDABPD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO∴△APD∽△ABOAP= OP= OP= PP故选:C.【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.二、填空题1、【分析】如图连接并延长,过点交于点,由题意可知为等边三角形,,在计算求解即可.【详解】解:如图连接并延长,过点交于点 由题意可知为等边三角形  故答案为:【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.2、【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为,扇形的弧长为圆锥的侧面积为圆锥的全面积为圆锥的底面积侧面积:故答案为:【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.3、9cm【分析】由弧长公式即可求得弧的半径.【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.4、【分析】先根据旋转的性质求得,再运用三角形内角和定理求解即可.【详解】解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°故答案是:30°.【点睛】本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.5、2【分析】连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.【详解】解:连接OCOA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CDABH∴∠OHC=90°,∴∠OCH=30°,OH=1,OC=2OH=2,故答案为:2.【点睛】本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.三、解答题1、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DFCF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF(2)如图所示延长DCG使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)①∠CAE=∠CBD,理由如下:在△CAE和△    CBD中,∴△CAE≌△CBDSAS),∴∠CAE=∠CBD②∵CFAE∴∠AHC=∠ACB=90°,∴∠CAH+∠ACH=∠ACH+∠BCF=90°,∴∠CAH=∠BCF∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCFCF=DFCF=BFBD=2CF又∵△CAE≌△CBDAE=2BD=2CF(2)AE=2CF仍然成立,理由如下:如图所示延长DCG使得,DC=CG,连接BG由旋转的性质可得,∠DCE=∠ACB=90°,∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,∴∠ACD=∠BCE∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG又∵CE=CD=CGAC=BC∴△ACE≌△BCGSAS),AE=BGFBD的中点,CD=CGCF是△BDG的中位线,BG=2CFAE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.2、(1)见解析;(2)4【分析】(1)连接OB,证明△AOB≌△AOCSSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;(2)在Rt△BOD中,勾股定理求得BD,根据sinD,代入数值即可求得答案【详解】解:(1)连接OBAB是⊙O的切线,OBAB即∠ABO=90°,BC是弦,OABCCEBEACAB在△AOB和△AOC中,∴△AOB≌△AOCSSS),∴∠ACO=∠ABO=90°,ACOCAC是⊙O的切线;(2)在Rt△BOD中,由勾股定理得,BD=2∵sinD,⊙O半径为2,OD=4.解得AC=2ADBD+AB=4【点睛】本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;(2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OCCE是⊙O的切线,∴∠OCE∵∠ABC∴∠AOC=2∠ABC∵∠AOC+∠OCEADEC(2)解:过点AAFECEC于点F∵∠AOCOAOC∴∠OAC∵∠BAC∴∠BADADEC∵∠OCE,∠AOC,∠AFC=90°,∴四边形OAFC是矩形,OAOC∴四边形OAFC是正方形,RtAFE中,AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.4、(1)见解析;(2)(3)当时,;当时,【分析】(1)通过证,即可得(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解.【详解】证明:(1)∵AQAPBC是⊙O的直径(2)如图,连接CDPDBC是⊙O的直径AB=3,AC=4∴利用勾股定理得:,即直径为5DP是⊙O的直径,且DP=BC=5∵点C的中点CD=PC是等腰直角三角形∴利用勾股定理得:,则,即:,即:(3)连接AO,ODOPCDODAC于点M(已证)OD,OP共线,为⊙O的直径情况一:当AP=PCAP=PC∴在中,∴在中,情况二:当时,同情况一:情况三:当OA=OD综上所述,当时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.5、(1)见解析;(2)CD=EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC∴∠1=∠B∠2=∠COB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB的直径∴∠ACB=90°∴∠AEO=∠ACB=90°RtABC中,∠ACB=90°,BC=6,AB=10 AC=8∵半径ODAC于E EC=AE=4  OE=ED=2  由勾股定理得,CD=∴△EDF∽△CBFEF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键. 

    相关试卷

    初中数学第24章 圆综合与测试同步测试题:

    这是一份初中数学第24章 圆综合与测试同步测试题,共29页。

    2021学年第24章 圆综合与测试课后作业题:

    这是一份2021学年第24章 圆综合与测试课后作业题,共28页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共30页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map