搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪科版九年级数学下册第24章圆章节测试试题(无超纲)

    2021-2022学年度沪科版九年级数学下册第24章圆章节测试试题(无超纲)第1页
    2021-2022学年度沪科版九年级数学下册第24章圆章节测试试题(无超纲)第2页
    2021-2022学年度沪科版九年级数学下册第24章圆章节测试试题(无超纲)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评
    沪科版九年级数学下册第24章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中点关于原点对称的点的坐标是( )A. B. C. D.2、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°3、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )A.80° B.70° C.60° D.50°4、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )A.60 B.90 C.120 D.1805、下列图形中,是中心对称图形也是轴对称图形的是(  )A. B. C. D.6、下列图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.7、如图,四边形内接于,如果它的一个外角,那么的度数为( )A. B. C. D.8、下列各点中,关于原点对称的两个点是(  )A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A.50° B.70° C.110° D.120°10、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A.45° B.60° C.90° D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°2、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.3、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.4、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.5、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________. 三、解答题(5小题,每小题10分,共计50分)1、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PA+PB=PC.2、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.①求证:BE平分∠AEC.②取BC的中点P,连接PH,求证:PHCG.③若BC=2AB=2,求BG的长.(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.3、如图1,在中,,,点D为AB边上一点.(1)若,则______;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.4、如图,和中,,,,连接,点M,N,P分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.5、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;(2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.-参考答案-一、单选题1、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.2、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.3、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.4、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.5、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵∴∵四边形内接于∴又∵∴.故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.8、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.9、B【分析】根据旋转可得,,得.【详解】解:,,,将绕点逆时针旋转得到△,使点的对应点恰好落在边上,,,.故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.10、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β; ∵四边形ABCO是菱形, ∴∠ABC=∠AOC; ∠ADC=β; 四边形为圆的内接四边形,α+β=180°, ∴ , 解得:β=120°,α=60°,则∠ADC=60°, 故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.二、填空题1、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PA,PB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.2、【分析】分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.【详解】解:当点P与点O重合时,∵OA=OC,∴,即;当点P与点B重合时,∵AB是的直径,∴,∴x的取值范围是.【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.3、或【分析】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.【详解】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,如图所示:∵,∴,,∵点A绕点G顺时针旋转90°后得到点,∴,,∴,∵轴,轴,∴,∴,∴,在与中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案为:,.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.4、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与⊙O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.5、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF中心角为∴正六边形ABCDEF为6个边长为4的正三角形组成的∴正六边形ABCDEF边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键.三、解答题1、(1)△ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.【详解】解:(1)△ABC是等边三角形.证明如下:由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.∴△ABC是等边三角形.(2)如图所示,在PC取一点E使得AE=AP,∵∠APE=60°,AP=AE,∴△APE是等边三角形,∴AP=PE,∠AEP=60°,∴∠AEC=120°,又∵∠APC=∠CPB=60°,∴∠APB=120°,∴∠AEC=∠APB,∵△ABC是等边三角形,∴AB=AC,又∵∠ABP=∠ACE,∴△APB≌△AEC(AAS),∴BP=CE,∴PC=PE+CE=AP+BP.【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.2、(1)①见解析;②见解析;③(2)【分析】(1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;③如图2,过点作的垂线,解直角三角形即可得到结论.(2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形绕着点按顺时针方向旋转得到矩形,,,又,,,平分;②证明:如图1,过点作的垂线,平分,,,,,,,,,,即点是中点,又点是中点,;③解:如图2,过点作的垂线,,,,,,,,,;(2)解:如图3,连接,,过作交的延长线于,交的延长线于,,,将矩形绕着点按顺时针方向旋转得到矩形,,,点,,第二次在同一直线上,,,,,,,,,,,.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.3、(1)5(2)证明见解析(3)【分析】(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.(1)过C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)连接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中点N,连接FN、BN,∵,,∴∵AF垂直CD∴∵AC中点N,∴∴∵三角形BFN中∴∴当B、F、N三点共线时BF最小,最小值为.【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.4、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图,∵,,,∴ ∴ ∴∴BD=CE,∵点M,N,P分别是的中点∴//,,PN//BD,PN=BD∴PM=PN, ∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴ ∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴ ∴的周长为 ∵ ∴的周长为 当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5∴周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11∴周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.5、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t 的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t =∠DOC=25,∴t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t 的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课堂检测:

    这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共28页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试练习:

    这是一份沪科版九年级下册第24章 圆综合与测试练习,共31页。

    初中数学第24章 圆综合与测试课时练习:

    这是一份初中数学第24章 圆综合与测试课时练习,共34页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map