搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年沪科版九年级数学下册第24章圆定向测评试题(含详细解析)

    2021-2022学年沪科版九年级数学下册第24章圆定向测评试题(含详细解析)第1页
    2021-2022学年沪科版九年级数学下册第24章圆定向测评试题(含详细解析)第2页
    2021-2022学年沪科版九年级数学下册第24章圆定向测评试题(含详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第24章 圆综合与测试课后作业题

    展开

    这是一份2021学年第24章 圆综合与测试课后作业题,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在,如图,点A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(    A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的2、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.103、如图,AB的直径,,劣弧BC的长是劣弧BD长的2倍,则AC的长为(    A. B. C.3 D.4、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )A.10 B.2 C.2 D.45、下列四个图案中,是中心对称图形的是(  )A. B.C. D.6、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是(  )A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形7、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定8、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°9、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.10、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(    A.25° B.80° C.130° D.100°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________2、如图,已知,在中,.将绕点A逆时针旋转一个位置,连接BDCE交于点F(I)求证:(2)若四边形ABFE为菱形,求的值;(3)在(2)的条件下,若,直接写出CF的值.3、如图,已知正方形ABCD的边长为6,ECD边上一点,将绕点A旋转至,连接,若,则的长等于______.4、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.5、点(2,-3)关于原点的对称点的坐标为_____.三、解答题(5小题,每小题10分,共计50分)1、如图1,在⊙O中,ACBD,且ACBD,垂足为点E(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.2、如图,在等边中,DBC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CFBFAF之间的数量关系,并证明.3、如图,的直径,四边形内接于的中点,的延长线于点(1)求证:的切线;(2)若,求的长.4、如图,在RtABC中,∠B=90°,∠BAC的平分线ADBC于点D,点EAC上,以AE为直径的⊙O经过点D(1)求证:BC是⊙O的切线;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.5、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点AADOC,交BC的延长线于D(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABCAB的长. -参考答案-一、单选题1、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n∴原来扇形的面积为∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的∴变化后的扇形的半径为3r,圆心角为∴变化后的扇形的面积为∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.2、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.3、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接 是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.4、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.【详解】解:∵在RtABC中,AB=6,BC=8,由旋转性质可知,AB= AB'=6,BC= B'C'=8,B'C=10-6=4,RtB'C'C中,故选:D.【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.5、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.6、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CECF∴△CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.7、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr8、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.10、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题1、    4    【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理整理得:解得这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为故答案为【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.2、(1)见解析;(2)120°;(3)【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;(3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过FFGACG,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.【详解】解:(1)由旋转得:AB=ADAC=AE,∠BAD=∠CAE=AB=ACAB=AC=AD=AE在△ABD和△ACE中,∴△ABD≌△ACESAS);(2)∵AB=AD,∠BAD=,∠BAC=30°,∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,∵四边形ABFE是菱形,∴∠BAE+∠ABD=180°,即+30°+90°-=180°,解得:=120°;(3)连接AF∵四边形ABFE是菱形,∠BAE=+30°=150°,∴∠BAF=BAE=75°,又∠BAC=30°,∴∠FAC=75°-30°=45°,∵△ABD≌△ACE∴∠FCA=∠ABD=90°-=30°,FFGACG,设FG=x在Rt△AGF中,∠FAG=45°,∠AGF=90°,∴∠AFG=∠FAG=45°,∴△AGF是等腰直角三角形,AG=FG=x在在Rt△AGF中,∠FCG=30°,∠FGC=90°,CF=2FG=2xAC=AB=2,又AG+CG=AC解得:CF=2x= 【点睛】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.3、4【分析】在正方形ABCD中,BE′=DE=2,所以在直角三角形ECE中,EC=8,CE=4,利用勾股定理求得EE′的长即可.【详解】解:在正方形ABCD中,∠C=90°,由旋转得,BE′=DE=2,EC=8,CE=4,∴在直角三角形ECE中,EE′==4故答案为4【点睛】本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.4、【分析】先根据旋转的性质求得,再运用三角形内角和定理求解即可.【详解】解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°故答案是:30°.【点睛】本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.5、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.【详解】点(2,-3)关于原点的对称点的坐标是(-2,3). 故答案为: (-2,3).【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.三、解答题1、(1);(2);(3)【分析】(1)如图,过 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过 垂足分别为 连接 四边形为矩形,由勾股定理可得: 四边形为正方形, (2)如图,过 垂足分别为 由(1)得:四边形为正方形, OA=2,∠OAB=15°, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.2、(1)20°;(2);(3)AF= CF+BF,理由见解析【分析】(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明FCG三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)∵△ABC是等边三角形,AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,AC=AEAB=AE(3)AF= CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACGAF=AG,∠FAG=60°,∠ACG=∠ABFBF=CG在△AEF和△ACF中,∴△AEF≌△ACFSAS),∴∠AFE=∠AFC∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,FCG三点共线,∴△AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.3、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解.【详解】(1)证明:连接OD的中点,∴∠ABC=2∠ABD∵∠AOD=2∠ABD∴∠AOD=∠ABCODBC的切线;(2)连接AC,交OD于点FAB是直径,∴∠ACB=90°,AC=的中点,ODACAF=CF=3,DF=5-4=1,∵∠E=∠EDF=∠DFC=90°,∴四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=∵∠ADB=90°,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.4、(1)①见解析;②见解析;(2)【分析】(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.【详解】解:(1)①连接OD是∠BAC的平分线是⊙O的切线;②连接DE是⊙O的切线,是直径(2)连接DEODDFOF,设圆的半径为RF是劣弧AD的中点,OFDA中垂线DF=AF是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.5、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点OOEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA∵∠CBA=45°,∴∠COA=90°,      ADOC∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上,       AD是⊙O的切线;     (2)连接OB,过点OOEAB,垂足为E∵∠OCB=75°,OB=OC∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,              由(1)证可得∠AOC=90°,∴∠AOB=120°,                   OA=OB∴∠OAB=∠OBA=30°,又∵OEABAE=BE   RtAOE中,AO=2,∠OAE=30°,OE=AO=1,                          由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共29页。

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共29页。

    数学九年级下册第24章 圆综合与测试课后复习题:

    这是一份数学九年级下册第24章 圆综合与测试课后复习题,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map