终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含解析)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含解析)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含解析)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共32页。
    沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形内接于,如果它的一个外角,那么的度数为(    A. B. C. D.2、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为(    A.25° B.80° C.130° D.100°3、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.4、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断5、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°6、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )A.10 B.6 C.6 D.127、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为(    A.3 B. C. D.8、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(    A.平移 B.翻折 C.旋转 D.以上三种都不对9、下列汽车标志中既是轴对称图形又是中心对称图形的是(    A. B. C. D.10、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△ABC′.则图中阴影部分的面积为_____.2、如图,在平行四边形中,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留3、如图,已知,外心为,分别以为腰向形外作等腰直角三角形,连接交于点,则的最小值是______.4、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.5、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作RtOA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 RtOA2A3RtOA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.三、解答题(5小题,每小题10分,共计50分)1、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BCDC或其所在直线相交于点EF,连接EF(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC相交时,如图1所示,请直接写出线段BEDFEF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CBDC的延长线相交时,如图2所示,请直接写出线段BEDFEF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.2、如图,AB是⊙O的直径,点C是⊙O上一点连接BC,半径ODBC(1)求证:弧AD=弧CD(2)连接AC、BD相交于点FACOD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CDEF的长.3、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含BD点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 ENAMCM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.4、如图1,BC是⊙O的直径,点AP在⊙O上,且分别位于BC的两侧(点AP均不与点BC重合),过点A AQAP,交PC 的延长线于点QAQ交⊙O于点D,已知AB=3,AC=4.(1)求证:△APQ∽△ABC(2)如图2,当点C的中点时,求AP的长.(3)连结AOOD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.5、如图,在⊙O中,点E是弦CD的中点,过点OE作直径ABAEBE),连接BD,过点CCFBDAB于点G,交⊙O于点F,连接AF.求证:AGAF -参考答案-一、单选题1、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵四边形内接于又∵故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.2、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出4、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.5、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.6、D【分析】连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OBOC∵∠BAC=30°,∴∠BOC=60°.OB=OCBC=6,∴△OBC是等边三角形,OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.7、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙OD,连结DC∵∠A=30°,∴∠D=∠A=30°,BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,BD=2BC=6,OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.8、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.二、填空题1、【分析】利用勾股定理求出ACAB的长,根据阴影面积等于求出答案.【详解】解:由旋转得=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,AC=2BC=2,AB=∴阴影部分的面积==,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.2、【分析】过点C于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C于点H在平行四边形中,平行四边形的面积为:图中黑色阴影部分的面积为:故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.3、【分析】是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:是等腰直角三角形,中,在以为直径的圆上,的外心为如图,当时,的值最小,的最小值是故答案为:【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可.【详解】解:如图,ACOB∵圆心角为60°,OA=OB∴△OAB是等边三角形,OC=OB=1,AC=SOAB=OB×AC=×2×=S扇形OAB==∴弓形(阴影部分)的面积= S扇形OAB- SOAB=故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.5、22020【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),OA0=1,∴点A1 的横坐标是 1=20OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21 依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:A3 的横坐标是﹣2OA2=﹣8=﹣23A4 的横坐标是﹣8=﹣23A5 的横坐标是 OA5×2OA4=2OA3=4OA2=16=24A6 的横坐标是2OA5=2×2OA4=23OA3=64=26A7 的横坐标是64=26发现规律,6次一循环,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n轴上,且坐标为三、解答题1、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为【分析】(1)延长FDG,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAFEAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF理由:延长FDG,使DG=BE,连接AG,如图①,ABCD是正方形,AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADGAAS),AE=AG,∠DAG=∠EAB∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,AF=AF∴△GAF≌△EAFAAS),EF=GFGF=DF+DG=DF+BE即:EF=DF+BE(2)结论:EF=DF-BE理由:在DC上截取DH=BE,连接AH,如图②,AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABESAS),AH=AE,∠DAH=∠EAB∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAFAF=AF∴△HAFEAFSAS),HF=EFDF=DH+HFEF=DF-BE(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:FD=x,由(1)的结论得FG=EF=2+xFC=4-xRtEFC中,(x+2)2=(4-x2+22x=EF=x+2=②当NA经过BC的中点G时,同(2)作辅助线,BE=x,由(2)的结论得EC=4+xEF=FHKBC边的中点,CK=BC=2,同理可证△ABKFCKSAS),CF=AB=4,EF=FH=CF+CD-DH=8-xRtEFC中,由勾股定理得到:(4+x2+42=(8-x2x=EF=8-=综上,线段EF的长为【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.2、(1)见解析;(2)CD=EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC∴∠1=∠B∠2=∠COB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB的直径∴∠ACB=90°∴∠AEO=∠ACB=90°RtABC中,∠ACB=90°,BC=6,AB=10 AC=8∵半径ODAC于E EC=AE=4  OE=ED=2  由勾股定理得,CD=∴△EDF∽△CBFEF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.3、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得∠ABM=∠EBNBM=BNAB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.【详解】解:AM=EN,理由为:∵△ABE是等边三角形,AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵线段BM绕点B逆时针旋转60°得到BNBM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN在△ABM和△EBN中,∴△ABM≌△EBNSAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.4、(1)见解析;(2)(3)当时,;当时,【分析】(1)通过证,即可得(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP(3)分类讨论, ,三种情况讨论,再通过勾股定理和相似即可求解.【详解】证明:(1)∵AQAPBC是⊙O的直径(2)如图,连接CDPDBC是⊙O的直径AB=3,AC=4∴利用勾股定理得:,即直径为5DP是⊙O的直径,且DP=BC=5∵点C的中点CD=PC是等腰直角三角形∴利用勾股定理得:,则,即:,即:(3)连接AO,ODOPCDODAC于点M(已证)OD,OP共线,为⊙O的直径情况一:当AP=PCAP=PC∴在中,∴在中,情况二:当时,同情况一:情况三:当OA=OD综上所述,当时,;当时,【点睛】本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.5、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,ABCDCFBD【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题:

    这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示的几何体,其左视图是.,如图所示的几何体的俯视图是,图1,分别从正面,下列物体中,三视图都是圆的是等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试课时训练:

    这是一份初中沪科版第24章 圆综合与测试课时训练,共29页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试达标测试:

    这是一份初中沪科版第24章 圆综合与测试达标测试,共27页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map