|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(无超纲)
    立即下载
    加入资料篮
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(无超纲)01
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(无超纲)02
    2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(无超纲)03
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试练习题

    展开
    这是一份数学九年级下册第24章 圆综合与测试练习题,共27页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    沪科版九年级数学下册第24章圆定向攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列各点中,关于原点对称的两个点是(  )

    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)

    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)

    2、下列图形中,既是轴对称图形,又是中心对称图形的是(  )

    A. B. C. D.

    3、下列语句判断正确的是(  )

    A.等边三角形是轴对称图形,但不是中心对称图形

    B.等边三角形既是轴对称图形,又是中心对称图形

    C.等边三角形是中心对称图形,但不是轴对称图形

    D.等边三角形既不是轴对称图形,也不是中心对称图形

    4、如图,的两边分别相切,其中OA边与相切于点P.若,则OC的长为(   

    A.8 B. C. D.

    5、如图,点ABC上,,则的度数是(   

    A.100° B.50° C.40° D.25°

    6、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(  

    A.  B. 

    C.  D.

    7、下列图形中,是中心对称图形也是轴对称图形的是(  )

    A. B. C. D.

    8、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    9、如图,的直径,弦,垂足为,若,则   

    A.5 B.8 C.9 D.10

    10、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(   

    A.3 B.1 C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,四边形ABCD内接于圆,ECD延长线上一点, 图中与∠ADE相等的角是 _________ .

    2、如图AB为⊙O的直径,点PAB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线ACBD,垂足分别为CD,连接AM,则下列结论正确的是______(写所有正确论的号)

    AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=

    3、如图,已知,外心为,分别以为腰向形外作等腰直角三角形,连接交于点,则的最小值是______.

    4、如图,在中,绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留

    5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留

    三、解答题(5小题,每小题10分,共计50分)

    1、已知:如图,A上的一点.

    求作:过点A且与相切的一条直线.

    作法:①连接OA

    ②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB

    ③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);

    ④作直线PA

    直线PA即为所求.

    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

    (2)完成下面的证明.

    证明:连接BA

    由作法可知

    ∴点A在以OP为直径的圆上.

        )(填推理的依据).

    OA的半径,

    ∴直线PA相切(    )(填推理的依据).

    2、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:

    证明:如图②,连接

    是⊙O的直径,

    ①________.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,②________________.

    平分

    ③________,

    任务:

    (1)请按照上面的证明思路,补全证明过程:①________,②________,③________;

    (2)若,求的长.

    3、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.

    4、新定义:如图①,已知,在内部画射线OC,得到三个角,分别为.若这三个角中有一个角是另外一个角的2倍,则称射线OC的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)

    (阅读理解)(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)

    (初步应用)(2)如图①,,射线OC的“幸运线”,则的度数为______;(直接写出答案)

    (解决问题)

    (3)如图②,已知,射线OMOA出发,以每秒10°的速度绕O点顺时针旋转,同时,射线ONOB出发,以每秒15°的速度绕O点顺时针旋转,设运动的时间为t.若OMONOB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值.

    (实际运用)

    (4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?

    5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).

    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;

    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.

    【详解】

    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;

    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;

    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;

    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;

    故选:D

    【点睛】

    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.

    2、C

    【详解】

    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;

    选项B不是轴对称图形,是中心对称图形,故B不符合题意;

    选项C既是轴对称图形,也是中心对称图形,故C符合题意;

    选项D是轴对称图形,不是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.

    3、A

    【分析】

    根据等边三角形的对称性判断即可.

    【详解】

    ∵等边三角形是轴对称图形,但不是中心对称图形,

    BCD都不符合题意;

    故选:A

    【点睛】

    本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.

    4、C

    【分析】

    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.

    【详解】

    解:如图所示,连接CP

    OAOB都是圆C的切线,∠AOB=90°,P为切点,

    ∴∠CPO=90°,∠COP=45°,

    ∴∠PCO=∠COP=45°,

    CP=OP=4,

    故选C.

    【点睛】

    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.

    5、C

    【分析】

    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.

    【详解】

    ∵∠ACB=50°,

    ∴∠AOB=100°,

    OA=OB

    ∴∠OAB=∠OBA= 40°,

    故选:C

    【点睛】

    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    6、C

    【分析】

    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.

    【详解】

    解:A、不是中心对称图形,故A错误.

    B、不是中心对称图形,故B错误.

    C、是中心对称图形,故C正确.

    D、不是中心对称图形,故D错误.

    故选:C.

    【点睛】

    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.

    7、C

    【分析】

    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.

    【详解】

    解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;

    B、是轴对称图形,不是中心对称图形,故B选项不符合题意;

    C、既是轴对称图形,又是中心对称图形,故C选项符合题意;

    D、是轴对称图形,但不是中心对称图形,故D选项不符合题意.

    故选:C

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    8、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    9、C

    【分析】

    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得

    【详解】

    解:如图,连接

    的直径,弦

    的半径为,则

    中,

    解得

    故选C

    【点睛】

    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    10、D

    【分析】

    根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.

    【详解】

    解:如图,设相交于点

    旋转,

    是等边三角形,

    阴影部分的面积为

    故选D

    【点睛】

    本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.

    二、填空题

    1、∠ABC

    【分析】

    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.

    【详解】

    解:∵四边形ABCD内接于圆,

    ECD延长线上一点,

    故答案为:

    【点睛】

    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.

    2、①②④

    【分析】

    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,可得,继而可得,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.

    【详解】

    解:连接OM

    PE的切线,

    AM平分,故①正确;

    AB的直径,

    ,故②正确;

    的长为,故③错误;

    又∵

    又∵

    ,则

    中,

    由①可得

    故④正确,

    故答案为:①②④.

    【点睛】

    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

    3、

    【分析】

    是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论.

    【详解】

    解:是等腰直角三角形,

    中,

    在以为直径的圆上,

    的外心为

    如图,当时,的值最小,

    的最小值是

    故答案为:

    【点睛】

    本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.

    4、##

    【分析】

    AC相交于点D,过点D,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.

    【详解】

    解:设AC相交于点D,过点D,垂足为点E

    为直角三角形,

    绕点B顺时针方向旋转45°得到

    中,

    故答案为:

    【点睛】

    题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.

    5、

    【分析】

    已知扇形的圆心角为,半径为2,代入弧长公式计算.

    【详解】

    解:依题意,n=r=2,

    ∴扇形的弧长=

    故答案为:

    【点睛】

    本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=

    三、解答题

    1、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理

    【分析】

    (1)根据所给的几何语言作出对应的图形即可;

    (2)根据圆周角定理和切线的判定定理解答即可.

    【详解】

    解:(1)补全图形如图所示,直线AP即为所求作;

    (2)证明:连接BA

    由作法可知

    ∴点A在以OP为直径的圆上,

    (直径所对的圆周角是直角),

    OA的半径,

    ∴直线PA相切(切线的判定定理),

    故答案为:直径所对的圆周角是直角,切线的判定定理.

    【点睛】

    本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.

    2、(1);(2)

    【分析】

    (1)由是⊙O的直径,得到ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明

    (2)在直角△ODE中利用勾股定理求解即可.

    【详解】

    解:(1)如图②,连接

    是⊙O的直径,

    ODB.(1)

    为⊙O的切线,

    ,(2)

    由(1)(2)得,∠ODA=∠BDE

    平分

    ODA

    故答案为:① ,② ,③

    (2)的切线,

    中,

    【点睛】

    本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.

    3、见解析

    【分析】

    由题意画图,再根据圆周角定理的推论即可得证结论.

    【详解】

    证明:根据题意作图如下:

    BD是圆周角ABC的角平分线,

    ∴∠ABD=∠CBD

    AD=CD

    【点睛】

    本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.

    4、(1)是;(2)16°或24°或32°;(3)2或;(4)

    【分析】

    (1)根据幸运线定义即可求解;

    (2)分3种情况,根据幸运线定义得到方程求解即可;

    (3)根据幸运线定义得到方程求解即可;

    (4)利用时针1分钟走,分针1分钟走,可解答问题.

    【详解】

    解:(1)一个角的平分线是这个角的“幸运线”;

    故答案为:是;

    (2)①设∠AOC=x,则∠BOC=2x

    由题意得,x+2x=48°,解得x=16°,

    ②设∠AOC=x,则∠BOC=x

    由题意得,x+x=48°,解得x=24°,

    ③设∠AOC=x,则∠BOC=x

    由题意得,x+x=48°,解得x=32°,

    故答案为:16°或24°或32°;

    (3)OB是射线OMON的幸运线,

    则∠BOM=MON,即50-10t=(50-10t+15t),解得t=2;

    BOM=MON,即50-10t=(50-10t+15t),解得t=

    BOM=MON,即50-10t=(50-10t+15t),解得t=

    故t的值是2或

    (4)时针1分钟走,分针1分钟走

    设小丽帮妈妈取包裹用了x分钟,

    则有0.5x+3×30=6x,解得:x=

    【点睛】

    本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.

    5、(1)图见解析;A1(3,3);(2)见解析

    【分析】

    (1)直接利用平移的性质得出对应点位置进而得出答案;

    (2)直接利用旋转的性质得出对应点位置进而得出答案.

    【详解】

    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.

    【点睛】

    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.

     

    相关试卷

    初中数学沪科版九年级下册第26章 概率初步综合与测试课时作业: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时作业,共18页。试卷主要包含了以下事件为随机事件的是,若a是从“,下列事件是必然发生的事件是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试精练: 这是一份数学九年级下册第24章 圆综合与测试精练,共30页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试习题: 这是一份初中沪科版第24章 圆综合与测试习题,共37页。试卷主要包含了下列图形中,是中心对称图形的是,在圆内接四边形ABCD中,∠A,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map