搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含答案解析)

    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含答案解析)第1页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含答案解析)第2页
    2021-2022学年基础强化沪科版九年级数学下册第24章圆定向测评试题(含答案解析)第3页
    还剩26页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪科版第24章 圆综合与测试课时训练

    展开

    这是一份初中沪科版第24章 圆综合与测试课时训练,共29页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于(    A. B. C. D.2、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断3、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(    A.1cm B.2cm C.3cm D.4cm4、如图,都是上的点,,垂足为,若,则的度数为(    A. B. C. D.5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.A.3π B.6π C.12π D.18π6、如图,CD的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.(2)作直线GHAB于点E.(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是(         A. B. C. D.7、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.8、如图,点ABC上,,则的度数是(    A.100° B.50° C.40° D.25°9、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.10、如图,AB的直径,的弦DC的延长线与AB的延长线相交于点P于点E,则阴影部分的面积为(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、两直角边分别为6、8,那么的内接圆的半径为____________.2、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________3、一条弧所对的圆心角为,弧长等于,则这条弧的半径为________.4、已知正多边形的半径与边长相等,那么正多边形的边数是______.5、如图,正三角形ABC的边长为DEF 分别为BCCAAB的中点,以ABC三点为圆心,长为半径作圆,图中阴影部分面积为______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,点C是⊙O上一点连接BC,半径ODBC(1)求证:弧AD=弧CD(2)连接AC、BD相交于点FACOD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CDEF的长.2、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.3、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过ABC三点的抛物线上.(1)求抛物线的解析式;(2)求过ABC三点的圆的半径;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;4、如图,抛物线y=-x+2与x轴负半轴交于点A,与y轴交于点B(1)求AB两点的坐标;(2)如图1,点Cy轴右侧的抛物线上,且ACBC,求点C的坐标;(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点ABO的对应点分别是点DEF),DE两点刚好在抛物线上. ①求点F的坐标;②直接写出点P的坐标. 5、如图,已知的直径,的切线,C为切点,于点E平分(1)求证:(2)求的长. -参考答案-一、单选题1、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点DAB的中点,在Rt△ACB中,由勾股定理可得故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.2、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.3、B【分析】连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.【详解】解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC==5cm,RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B.【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.4、B【分析】连接OC.根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC分别是所对的圆周角和圆心角,故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.5、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6、C【分析】连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AFBF,由作法可知,FE垂直平分AB,故A正确;CD的高,,故B正确;,故C错误;∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.8、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,OA=OB∴∠OAB=∠OBA= 40°,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.10、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:AB的直径,OD是半径,AE=CE∴阴影CED的面积等于AED的面积,故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.二、填空题1、5【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB==10,∵∠ACB=90°,AB是⊙O的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.2、    4    【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理整理得:解得这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为故答案为【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.3、9cm【分析】由弧长公式即可求得弧的半径.【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键.4、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.【详解】解:设这个正多边形的边数为n∵正多边形的半径与边长相等,OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.5、【分析】阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.【详解】连接AD,如图所示ADBCD点是BC的中点 由勾股定理得 S半圆= S阴影=SABCS半圆 故答案为:【点睛】本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.三、解答题1、(1)见解析;(2)CD=EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC∴∠1=∠B∠2=∠COB =OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB的直径∴∠ACB=90°∴∠AEO=∠ACB=90°RtABC中,∠ACB=90°,BC=6,AB=10 AC=8∵半径ODAC于E EC=AE=4  OE=ED=2  由勾股定理得,CD=∴△EDF∽△CBFEF=x,则FC=4-xEF=1,经检验符合题意.【点睛】本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.2、2+【分析】连接ACCMAB,过点CCHOAH,设OC=a.利用勾股定理构建方程解决问题即可.【详解】解:连接ACCMAB,过点CCHOAH,设OC=a∵∠AOB=90°,AB是直径,A(-4,0),B(0,2),∵∠AMC=2∠AOC=120°,RtCOH中,RtACH中,AC2=AH2+CH2a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.3、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).【分析】(1)3=OC=OA=3OB,故点ABC的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB故点BC的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=ax+1)(x-3)=ax2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:(3)过点AC分别作直线AC的垂线,交抛物线分别为PP1设点P(x,-x2+2x+3),过点PPQ轴于点QOA =OC,∠PAC=90°,∴∠ACO=∠OAC=45°,∵∠PAC=90°,∴∠PAQ=45°,∴△PAQ 是等腰直角三角形,PQ=AQ=xAQ+AO=x+3=-x2+2x+3,解得:(舍去),∴点P(1,4);设点P1(m,-m2+2m+3),过点P1P1D轴于点D同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,P1D=CD=m2-2m-3,DO=-mDO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),∴点P(-2,-5);综上,点P(1,4)或(-2,-5).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.4、(1)A(-1,0),B(0,2);(2)点C的坐标();(3)①求点F的坐标(1,2);②点P的坐标(【分析】(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;(2)设C的坐标为(x,-x+2),根据ACBC,得到,令t=-x,解方程即可;(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据BE都在抛物线上,则BE是对称点,从而确定点P在抛物线的对称轴上,点FBE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;②根据BE=3,∠BPE=90°,PB=PE,确定PBE的距离,即可写出点P的坐标.【详解】(1)令x=0,得y=2,∴点B的坐标为B(0,2);y=0,得-x+2=0,解得 ∵点Ax轴的负半轴;A点的坐标(-1,0);(2)设C的坐标为(x,-x+2),ACBCA(-1,0),B(0,2),A(-1,0),B(0,2),t=-x整理,得解得∵点Cy轴右侧的抛物线上,此时y=∴点C的坐标();(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,BE都在抛物线上,BE是对称点,∴点P在抛物线的对称轴上,点FBE上,且BEx轴,∵抛物线的对称轴为直线x=B(0,2),∴点E(3,2),BE=3,EF=BO=2,BF=1,∴点F的坐标为(1,2);②如图,设抛物线的对称轴与BE交于点M,交x轴与点NBE=3,BM=∵∠BPE=90°,PB=PEPM=BM=PM=BM=PN=2-=∴点P的坐标为().【点睛】本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.5、(1)90°;(2)AC=DE=1【分析】(1)如图,可知(2)可求出的长;可求出的长.【详解】解(1)证明如图所示,连接是直径,的切线,平分(2)解∵【点睛】本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共32页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,是的直径,等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共30页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map