![2021-2022学年最新沪科版九年级数学下册第24章圆月考试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12683307/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第24章圆月考试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12683307/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第24章圆月考试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12683307/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级下册第24章 圆综合与测试随堂练习题
展开
这是一份数学九年级下册第24章 圆综合与测试随堂练习题,共30页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,点A等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A.3 B.1 C. D.2、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).A.90° B.100° C.120° D.150°3、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A.50° B.70° C.110° D.120°4、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°5、计算半径为1,圆心角为的扇形面积为( )A. B. C. D.6、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )A. B. C. D.7、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )A.140° B.100° C.80° D.40°8、如图,是的直径,弦,垂足为,若,则( )A.5 B.8 C.9 D.109、如图,点A、B、C在上,,则的度数是( )A.100° B.50° C.40° D.25°10、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )A. B. C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一块直角三角板的30°角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为______.2、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.3、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________4、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,,,点D为AB边上一点.(1)若,则______;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.2、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.3、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:证明:如图②,连接,是⊙O的直径,,①________.(1)为⊙O的切线,,,(2)由(1)(2)得,②________________.平分.,③________,.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若,求的长.4、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.(1)弦AB的长为 .(2)求劣弧的长.5、如图,,,点D是上一点,与相交于点F,且.(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分. -参考答案-一、单选题1、D【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.2、D【分析】将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,,可将绕点逆时针旋转得,如图,连接,,,,为等边三角形,,,在中,,,,,为直角三角形,且,.故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3、B【分析】根据旋转可得,,得.【详解】解:,,,将绕点逆时针旋转得到△,使点的对应点恰好落在边上,,,.故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.4、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.6、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点D是AB的中点,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.7、C【分析】,,,进而求解的值.【详解】解:由题意知∵∴∴∵∴故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.8、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,∵是的直径,弦,∴设的半径为,则在中,,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA= 40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.二、填空题1、4【分析】连接OB、OC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.【详解】连接OB、OC,如图所示:∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∵,∴,即⊙O的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.2、【分析】由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:与是等腰直角三角形,,,在与中,,≌,,,,在以为直径的圆上,的外心为,,,如图,当时,的值最小,,,,,.则的最小值是,故答案为:.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.3、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点作轴,交于点,∵A(-1,0),B(2,0),∴,,∵D为线段BC的中点,轴,∴,∴,设点到轴的距离为,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,∴,∴为等边三角形,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.4、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.5、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与⊙O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、(1)5(2)证明见解析(3)【分析】(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.(1)过C作CM⊥AB于M,∵,∴∵∴∴在Rt中(2)连接BE,∵,,,∴,∴∴,∴在Rt中∴∴(3)取AC中点N,连接FN、BN,∵,,∴∵AF垂直CD∴∵AC中点N,∴∴∵三角形BFN中∴∴当B、F、N三点共线时BF最小,最小值为.【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.2、见解析【分析】由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.3、(1),,;(2)【分析】(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;(2)在直角△ODE中利用勾股定理求解即可.【详解】解:(1)如图②,连接,是⊙O的直径,,∠ODB.(1)为⊙O的切线,,,(2)由(1)(2)得,∠ODA=∠BDE.平分,∴.,∠ODA,.故答案为:① ,② ,③ ;(2)为的切线,.,,,.在中,.【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.4、(1),(2).【分析】(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,∴OD=CD=,∠ODB=90°,∴,∴AB=2BD=2×,故答案为;(2)cos∠DOB=,∴∠DOB=60°,∴的度数为2×60°=120°,∴.【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.5、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,,,故可证明三角形相似.(2)由得出.(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,,进而说明,得出平分.法二:通过得出F、D、C、E四点共圆,由得,从而得出平分.【详解】解:(1)证明在和中 .(2)证明:在和中 .(3)证明:又D是中点,平分.法二:F、D、C、E四点共圆又D是点,平分.【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共33页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共26页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后练习题,共30页。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)