高考数学(文数)二轮专题突破训练07《数形结合思想》 (学生版)
展开思想方法训练3 数形结合思想
一、能力突破训练
1.已知i为虚数单位,如果图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数对应的点位于复平面内的( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.方程sinx的实数解的个数是( )
A.2 B.3 C.4 D.以上均不对
3.若x∈{x|log2x=2-x},则( )
A.x2>x>1 B.x2>1>x
C.1>x2>x D.x>1>x2
4.若函数f(x)=(a-x)|x-3a|(a>0)在区间(-∞,b]上取得最小值3-4a时所对应的x的值恰有两个,则实数b的值等于( )
A.2± B.2-或6-3
C.6±3 D.2+或6+3
5.已知函数f(x)=与g(x)=x3+t,若f(x)与g(x)图象的交点在直线y=x的两侧,则实数t的取值范围是( )
A.(-6,0] B.(-6,6)
C.(4,+∞) D.(-4,4)
6.(2018浙江,9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )
A.-1 B.+1
C.2 D.2-
7.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为 .
8.函数f(x)=2sin xsin-x2的零点个数为 .
9.若不等式≤k(x+2)-的解集为区间[a,b],且b-a=2,则k= .
10.已知函数f(x)为偶函数且f(x)=f(x-4),又f(x)=函数g(x)=+a,若F(x)=f(x)-g(x)恰好有4个不同的零点,则a的取值范围是 .
11.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
| 连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?
二、思维提升训练
12.已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是( )
A. B. C. D.
13.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )
A. B. C. D.
14.已知函数f(x)=则方程f(x)=2x在区间[0,2 018]上的根的个数是 .
15.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),求abc的取值范围.
16.设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它们在x=1处的切线互相平行.
(1)求b的值;
(2)若函数F(x)=且方程F(x)=a2有且仅有四个解,求实数a的取值范围.
高考数学(文数)二轮专题突破训练19《概率》 (学生版): 这是一份高考数学(文数)二轮专题突破训练19《概率》 (学生版),共4页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
高考数学(文数)二轮专题突破训练08《转化与化归思想》 (学生版): 这是一份高考数学(文数)二轮专题突破训练08《转化与化归思想》 (学生版),共2页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。
高考数学(文数)二轮专题突破训练07《数形结合思想》 (教师版): 这是一份高考数学(文数)二轮专题突破训练07《数形结合思想》 (教师版),共9页。试卷主要包含了能力突破训练,思维提升训练等内容,欢迎下载使用。