高考数学(理数)二轮复习专题强化训练17《椭圆、双曲线与抛物线》 (学生版)
展开一、选择题
1.已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
2.已知双曲线-=1(a>0,b>0)的焦点到渐近线的距离为,且离心率为2,则该双曲线的实轴的长为( )
A.1 B.
C.2 D.2
3.双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作倾斜角为60°的直线与y轴和双曲线的右支分别交于A,B两点,若点A平分线段F1B,则该双曲线的离心率是( )
A. B.2+
C.2 D.+1
4.抛物线y2=2px(p>0)的焦点为F,过焦点F且倾斜角为的直线与抛物线相交于A,B两点,若|AB|=8,则抛物线的方程为( )
A.y2=3x B.y2=4x
C.y2=6x D.y2=8x
5.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( )
A.5 B.6
C.7 D.8
6.过双曲线-=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM,切点为M,交y轴于点P,若=λ,且双曲线的离心率e=,则λ=( )
A.1 B.2
C.3 D.4
二、填空题
7.抛物线E:y2=4x的焦点为F,准线l与x轴交于点A,过抛物线E上一点P(在第一象限内)作l的垂线PQ,垂足为Q.若四边形AFPQ的周长为16,则点P的坐标为________.
8.椭圆C:+=1(a>b>0)的左顶点为A,右焦点为F,过点F且垂直于x轴的直线交C于P,Q两点,若cos∠PAQ=,则椭圆C的离心率e为________.
9.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),P是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则·的最小值的取值范围是________.
三、解答题
10.已知椭圆C:+=1(a>b>0)的离心率为,短轴长为2.
(1)求椭圆C的标准方程;
(2)设直线l:y=kx+m与椭圆C交于M,N两点,O为坐标原点,若kOM·kON=,求原点O到直线l的距离的取值范围.
11.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,·=0,过F2垂直于x轴的直线交椭圆C于A,B两点,且|AB|=.
(1)求椭圆C的方程;
(2)设经过点(2,-1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.
12.已知圆C:(x-a)2+(y-b)2=的圆心C在抛物线x2=2py(p>0)上,圆C过原点且与抛物线的准线相切.
(1)求该抛物线的方程;
(2)过抛物线焦点F的直线l交抛物线于A,B两点,分别在点A,B处作抛物线的两条切线交于P点,求三角形PAB面积的最小值及此时直线l的方程.
高考数学(理数)二轮专题课时练习14《椭圆、双曲线、抛物线》(含解析): 这是一份高考数学(理数)二轮专题课时练习14《椭圆、双曲线、抛物线》(含解析),共3页。
高考数学(理数)二轮复习专题强化训练20《统计案例》 (学生版): 这是一份高考数学(理数)二轮复习专题强化训练20《统计案例》 (学生版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学(理数)二轮复习专题强化训练16《直线与圆》 (学生版): 这是一份高考数学(理数)二轮复习专题强化训练16《直线与圆》 (学生版),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。