开学活动
搜索
    上传资料 赚现金

    2022年沪科版九年级数学下册第24章圆专项攻克试卷(含答案解析)

    2022年沪科版九年级数学下册第24章圆专项攻克试卷(含答案解析)第1页
    2022年沪科版九年级数学下册第24章圆专项攻克试卷(含答案解析)第2页
    2022年沪科版九年级数学下册第24章圆专项攻克试卷(含答案解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共34页。试卷主要包含了如图,点A,如图,是的直径,等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列判断正确的个数有( )
    ①直径是圆中最大的弦;
    ②长度相等的两条弧一定是等弧;
    ③半径相等的两个圆是等圆;
    ④弧分优弧和劣弧;
    ⑤同一条弦所对的两条弧一定是等弧.
    A.1个 B.2个 C.3个 D.4个
    2、点P(-3,1)关于原点对称的点的坐标是( )
    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
    3、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为(  )

    A.5厘米 B.4厘米 C.厘米 D.厘米
    4、如图,点A、B、C在上,,则的度数是( )

    A.100° B.50° C.40° D.25°
    5、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    6、如图,是的直径,、是上的两点,若,则( )

    A.15° B.20° C.25° D.30°
    7、下列图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    8、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    9、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )

    A.22.5° B.45° C.90° D.67.5°
    10、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦 D.垂直于弦的直径平分这条弦
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.

    2、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.

    3、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.
    4、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.

    5、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    2、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.

    (1)弦AB的长为 .
    (2)求劣弧的长.
    3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.
    (1)当时,记线段OA为图形M.
    ①画出图形;
    ②若点C为图形N,则“转后距”为______;
    ③若线段AC为图形N,求“转后距”;

    (2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.
    4、如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,PC.若AB = 6,的长为π,BC = PC.求证:直线PC与⊙O相切.

    5、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 EN,AM、CM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.


    -参考答案-
    一、单选题
    1、B
    【详解】
    ①直径是圆中最大的弦;故①正确,
    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
    ③半径相等的两个圆是等圆;故③正确
    ④弧分优弧、劣弧和半圆,故④不正确
    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
    综上所述,正确的有①③
    故选B
    【点睛】
    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.
    2、C
    【分析】
    据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
    【详解】
    解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
    故选:C.
    【点睛】
    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
    3、D
    【分析】
    根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.
    【详解】
    解:∵杯口外沿两个交点处的读数恰好是2和8,
    ∴AC=8-2=6厘米,
    过点O作OB⊥AC于点B,

    则AB=AC=×6=3厘米,
    设杯口的半径为r,则OB=r-2,OA=r,
    在Rt△AOB中,
    OA2=OB2+AB2,即r2=(r-2)2+32,
    解得r=厘米.
    故选:D.
    【点睛】
    本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    4、C
    【分析】
    先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.
    【详解】
    ∵∠ACB=50°,
    ∴∠AOB=100°,
    ∵OA=OB,
    ∴∠OAB=∠OBA= 40°,
    故选:C.
    【点睛】
    本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    5、B
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    6、C
    【分析】
    根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
    【详解】
    解:∵∠BOC=130°,
    ∴∠BDC=∠BOC=65°,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠ADC=90°-65°=25°,
    故选:C.
    【点睛】
    本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
    7、D
    【详解】
    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    .不是轴对称图形,是中心对称图形,故本选项不符合题意;
    .是轴对称图形,不是中心对称图形,故本选项不符合题意;
    .既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    9、B
    【分析】
    根据同弧所对的圆周角是圆心角的一半即可得.
    【详解】
    解:∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
    10、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    二、填空题
    1、2
    【分析】
    连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.
    【详解】
    解:连接OC,

    ∵OA=OC,∠A=30°,
    ∴∠COH=2∠A=60°,
    ∵弦CD⊥AB于H,
    ∴∠OHC=90°,
    ∴∠OCH=30°,
    ∵OH=1,
    ∴OC=2OH=2,
    故答案为:2.
    【点睛】
    本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.
    2、
    【分析】
    连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.
    【详解】
    解:如下图所示,连接OC交AB于点D,再连接OA.

    ∵折叠后弧的中点与圆心重叠,
    ∴,OD=CD.
    ∴AD=BD.
    ∵圆形纸片的半径为10cm,
    ∴OA=OC=10cm.
    ∴OD=5cm.
    ∴cm.
    ∴BD=cm.
    ∴cm.
    故答案为:.
    【点睛】
    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.
    3、8
    【分析】
    根据一次函数解析式可得:,,过点B作轴,过点A作,过点Q作,由旋转的性质可得,,依据全等三角形的判定定理及性质可得:ΔMAB≅ΔNBQ,,,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.
    【详解】
    解:函数得:,,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:

    将线段BA绕点B逆时针旋转得到线段BQ,
    ∴,,

    ∴,
    在ΔMAB与ΔNBQ中,

    ∴ΔMAB≅ΔNBQ,
    ∴,,
    点Q的坐标为,

    当或时,取得最小值为8,
    故答案为:8.
    【点睛】
    题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.
    4、##
    【分析】
    延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.
    【详解】
    解:延长AG交CD于M,如图1,

    ∵ABCD是正方形,
    ∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,
    ∵AD=CD,∠ADB=∠BDC,DG=DG,
    ∴△ADG≌△DGC,
    ∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,
    ∴△ADM≌△CDF,
    ∴FD=DM且AE=DF,
    ∴AE=DM且AB=AD,∠ADM=∠BAD=90°,
    ∴△ABE≌△DAM,
    ∴∠DAM=∠ABE,
    ∵∠DAM+∠BAM=90°,
    ∴∠BAM+∠ABE=90°,即∠AHB=90°,
    ∴点H是以AB为直径的圆上一点.
    如图2,取AB中点O,连接OD,OH,

    ∵AB=AD=2,O是AB中点,
    ∴AO=1=OH,
    在Rt△AOD中,OD=,
    ∵DH≥OD-OH,
    ∴DH≥-1,
    ∴DH的最小值为-1,
    故答案为:-1.
    【点睛】
    本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.
    5、##
    【分析】
    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
    【详解】
    解:连接,取的中点,连接,


    点在以为圆心,为半径的圆上,
    当、、三点共线时,最小,
    是直径,

    ,,
    ,,
    在中,,

    故答案为:.
    【点睛】
    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
    三、解答题
    1、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
    2、(1),(2).
    【分析】
    (1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;
    (2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.
    【详解】
    解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,
    ∴OD=CD=,∠ODB=90°,
    ∴,
    ∴AB=2BD=2×,
    故答案为;
    (2)cos∠DOB=,
    ∴∠DOB=60°,
    ∴的度数为2×60°=120°,
    ∴.
    【点睛】
    本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.
    3、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.
    【分析】
    (1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.
    ②∵点C为图形N,求出OC=2最短距离;
    ③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;
    (2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.
    【详解】
    解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;
    ②∵点C为图形N,OC=2为图形M与图形N的“转后距”,
    ∴“转后距”为2,
    故答案为2;
    ③线段AC为图形N,
    过点O作OF⊥AC于F,
    根据勾股定理OA=,AC=,
    ∴OA=AC=OC=2,
    ∴△OAC为等边三角形,
    ∵OF⊥AC,
    ∴AF=CF=1,
    ∴OF=,
    ∴“转后距”为;

    (2)∵点,点,
    ∴tan∠OPQ=,
    ∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,
    ∵CB=4-2=2=AC,∠ACO=60°,
    ∴∠CAB=∠ABC=30°,
    分三种情况,
    当°,当点P在点B右边,PB=t-4,BD>1,
    ∴BPsin60>1,
    ∴,
    解得;

    当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,
    ∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,
    ∵PB=4-t,
    ∴PB=2PE>2×1即4-t>2,
    解得t<2,
    当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,
    ∴t>0,
    ∴0<t<2;

    当点P在B′左边,PB′>1,OB′=OB=4,
    ∴t<-5;

    综合t的取值范围为t<-5或0<t<2或.
    【点睛】
    本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.
    4、见详解
    【分析】
    连接OC,由题意易得∠AOC=60°,则有∠B=∠OCB=30°,然后可得∠P=∠B=30°,进而可得∠OCP=90°,最后问题可求证.
    【详解】
    证明:连接OC,如图所示:

    ∵的长为π,AB=6,
    ∴OC=OA=3,,
    ∴,
    ∵OB=OC,
    ∴∠B=∠OCB=30°,
    ∵BC=PC,
    ∴∠P=∠B=30°,
    ∴∠POC+∠P=90°,即∠OCP=90°,
    ∵OC是圆O的半径,
    ∴直线PC与⊙O相切.
    【点睛】
    本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.
    5、AM=EN,理由见解析
    【分析】
    根据旋转性质和等边三角形的性质可证得∠ABM=∠EBN,BM=BN,AB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.
    【详解】
    解:AM=EN,理由为:
    ∵△ABE是等边三角形,
    ∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,
    ∵线段BM绕点B逆时针旋转60°得到BN,
    ∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,
    ∴∠ABM=∠EBN,
    在△ABM和△EBN中,

    ∴△ABM≌△EBN(SAS),
    ∴AM=EN.
    【点睛】
    本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共34页。

    数学第24章 圆综合与测试课时训练:

    这是一份数学第24章 圆综合与测试课时训练,共28页。

    数学沪科版第24章 圆综合与测试课时作业:

    这是一份数学沪科版第24章 圆综合与测试课时作业,共32页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map