![2022年精品解析沪科版九年级数学下册第24章圆重点解析试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12685527/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第24章圆重点解析试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12685527/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第24章圆重点解析试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12685527/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第24章 圆综合与测试巩固练习
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共35页。
沪科版九年级数学下册第24章圆重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是△ABC的外接圆,已知,则的大小为( )
A.55° B.60° C.65° D.75°
2、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
3、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
4、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A. B. C. D.
5、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
A. B. C. D.
6、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是( )
A.AM=BM B.CM=DM C. D.
7、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
8、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
9、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
2、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.
3、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.
4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
5、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.
三、解答题(5小题,每小题10分,共计50分)
1、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:
证明:如图②,连接,
是⊙O的直径,,
①________.(1)
为⊙O的切线,,
,(2)
由(1)(2)得,②________________.
平分.
,
③________,
.
任务:
(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;
(2)若,求的长.
2、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.
(1)如图,当点E在线段CD上时,
①依题意补全图形,并直接写出BC与CF的位置关系;
②求证:点G为BF的中点.
(2)直接写出AE,BE,AG之间的数量关系.
3、如图AB是⊙O的直径,弦CD⊥AB于点E,作∠FAC=∠BAC,过点C作CF⊥AF于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠CAB=,求=_______.(直接写出答案)
4、如图1,在中,,,将边绕着点A逆时针旋转,得到线段,连接交边于点E,过点C作于点F,延长交于点G.
(1)求证:;
(2)如图2,当时,求证:;
(3)如图3,当时,请直接写出的值.
5、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
-参考答案-
一、单选题
1、C
【分析】
由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
【详解】
解:∵OA=OB,,
∴∠BAO=.
∴∠AOB=130°.
∴=∠AOB=65°.
故选:C.
【点睛】
此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
2、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
3、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
4、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
5、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
6、B
【分析】
根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
【详解】
解:∵弦AB⊥CD,CD过圆心O,
∴AM=BM,,,
即选项A、C、D选项说法正确,不符合题意,
当根据已知条件得CM和DM不一定相等,
故选B.
【点睛】
本题考查了垂径定理,解题的关键是掌握垂径定理.
7、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
9、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、35°
【分析】
根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
∴∠AOD=∠BOC=30°,AO=DO,
∵∠AOC=100°,
∴∠BOD=100°−30°×2=40°,
∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
故答案为:35°.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
2、##
【分析】
延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.
【详解】
解:延长AG交CD于M,如图1,
∵ABCD是正方形,
∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,
∵AD=CD,∠ADB=∠BDC,DG=DG,
∴△ADG≌△DGC,
∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,
∴△ADM≌△CDF,
∴FD=DM且AE=DF,
∴AE=DM且AB=AD,∠ADM=∠BAD=90°,
∴△ABE≌△DAM,
∴∠DAM=∠ABE,
∵∠DAM+∠BAM=90°,
∴∠BAM+∠ABE=90°,即∠AHB=90°,
∴点H是以AB为直径的圆上一点.
如图2,取AB中点O,连接OD,OH,
∵AB=AD=2,O是AB中点,
∴AO=1=OH,
在Rt△AOD中,OD=,
∵DH≥OD-OH,
∴DH≥-1,
∴DH的最小值为-1,
故答案为:-1.
【点睛】
本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.
3、
【分析】
如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,通过△OCD≌△OBE(SAS),可得OE=OD,通过旋转观察如图可知当DO⊥AB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.
【详解】
解:如图,连接OD,OE,OC,设DO与⊙O交于点M,连接CM,BM,
∵四边形BCDE是正方形,
∴∠BCD=∠CBE=90°,CD=BC=BE=DE,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE,
∴△OCD≌△OBE(SAS),
∴OE=OD,
根据旋转的性质,观察图形可知当DO⊥AB时,DO最长,即OE最长,
∵∠MCB=∠MOB=×90°=45°,
∴∠DCM=∠BCM=45°,
∵四边形BCDE是正方形,
∴C、M、E共线,∠DEM=∠BEM,
在△EMD和△EMB中,
,
∴△MED≌△MEB(SAS),
∴DM=BM===2(cm),
∴OD的最大值=2+2,即OE的最大值=2+2;
故答案为:(2+2)cm.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.
4、65
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
5、1+
【分析】
过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,
得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.
【详解】
解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,
∵点A(3,0)
∴AD=x-3,
∵为等腰直角三角形,
∴AB=AC,∠BAC=90°,
∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,
∵CD⊥x轴, BE⊥x轴,
∴∠BEA=∠ADC=90°,
∴∠ACD+∠CAD=90°,
∴∠ACD=∠BAE,
在△BAE和△ACD中,
,
∴△BAE≌△ACD(AAS),
∴BE=AD=x-3,EA=DC,
在Rt△EBO中,OB=1,BE= x-3,
根据勾股定理,
∴EA=OE+OA=,
∴CD=AE=,
∴CO=,
当OD=CD时OC最大,OC=,此时,
∴,
∴,
∴,
∴,(舍去),
∴线段OC长度的最大值为.
故答案为:1+.
【点睛】
本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.
三、解答题
1、(1),,;(2)
【分析】
(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;
(2)在直角△ODE中利用勾股定理求解即可.
【详解】
解:(1)如图②,连接,
是⊙O的直径,
,
∠ODB.(1)
为⊙O的切线,
,
,(2)
由(1)(2)得,∠ODA=∠BDE.
平分,
∴.
,
∠ODA,
.
故答案为:① ,② ,③ ;
(2)为的切线,
.
,
,
,
.
在中,
.
【点睛】
本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.
2、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
【分析】
(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
【详解】
解:(1)①如图所示,BC⊥CF.
∵将线段AE逆时针旋转90°得到线段AF,
∴AE=AF,∠EAF=90°,
∴∠EAC+∠CAF=90°,
∵,,
∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF(SAS),
∴∠ABE=∠ACF=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
∴BC⊥CF;
②∵AD⊥BC,BC⊥CF.
∴AD∥CF,
∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
∴△BDG∽△BCF,
∴,
∵,AD⊥BC,
∴BD=DC=,
∴,
∴,
∴,
∴BG=GF;
(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
∵AD⊥BC,AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠CAD=,
∵BG=GF,AG∥HF,
∴∠BAG=∠H=45°,∠AGB=∠HFB,
∴△BAG∽△BHF,
∴,
∴HF=2AG,
∵∠ACE=45°,
∴∠ACE =∠H,
∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
∴∠EAC=∠FAH,
在△AEC和△AFH中,
,
∴△AEC≌△AFH(AAS),
∴EC=FH=2AG,
在Rt△AEF中,根据勾股定理,
在Rt△ECF中,即.
【点睛】
本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
3、
(1)见解析
(2)
【分析】
(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;
(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案.
(1)
(1)如图,连接OC,
∵OA=OC,
∴∠CAB=∠ACO,
∵∠FAC=∠BAC,
∴∠FAC=∠ACO,
∴AF//OC,
∴∠AFC+∠OCF=180°,
∵CF⊥AF,
∴∠OCF=90°,即OC⊥CF,
∴CF是⊙O的切线.
(2)
在△AFC和△AEC中,,
∴△AFC≌△AEC,
∴S△AFC=S△AEC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE,
∴S△BCD=2S△BCE,
∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,
∴∠BCE=∠CBA,
∵sin∠CAB=,
∴sin∠CAB=sin∠BCE=,
∴BE=,AB=,
∴AE=,
∴====.
故答案为:
【点睛】
本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.
4、
(1)见解析
(2)见解析
(3)
【分析】
(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;
(2)连接,根据ASA证明≌得,是等边三角形,从而得出,再运用AAS证明≌得,由勾股定理可得出,从而 可得结论;
(3)证明平分,作于点,根据勾股定理得,代入求值即可.
(1)
∵边绕着点逆时针旋转得到线段,
∴.
∵,
∴.
∴.
∵,
∴
又,且∠AEB=∠CEF
∴.
∴.
(2)
连接.
在和中,
∵,
∴≌(ASA).
∴.
∴,即.
在和中,
∵,
∴≌(AAS).
∴.
∵,
∴在中,,
即.
∵,,
∴是等边三角形.
∴.
(3)
.
∵,,
∴
∵.
∵,
∴.
∴平分.
作于点,
∴.
∴在中,.
∵≌,≌,
∴,,.
∴在中,,
∵,
∴.
【点睛】
本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形.
5、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共32页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共27页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试精练,共26页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)