搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练沪科版九年级数学下册第24章圆达标测试试卷(精选含答案)

    2022年最新强化训练沪科版九年级数学下册第24章圆达标测试试卷(精选含答案)第1页
    2022年最新强化训练沪科版九年级数学下册第24章圆达标测试试卷(精选含答案)第2页
    2022年最新强化训练沪科版九年级数学下册第24章圆达标测试试卷(精选含答案)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪科版第24章 圆综合与测试复习练习题

    展开

    这是一份初中沪科版第24章 圆综合与测试复习练习题,共26页。试卷主要包含了如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(    A.105° B.120° C.135° D.150°2、下列图形中,既是轴对称图形又是中心对称图形的是(       A. B. C. D.3、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°4、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为(  )A.5厘米 B.4厘米 C.厘米 D.厘米5、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(    A.19° B.38° C.52° D.76°6、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.107、计算半径为1,圆心角为的扇形面积为(    A. B. C. D.8、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是(     A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<29、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).A.20° B.25° C.30° D.40°10、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.8第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.2、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.3、将点x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.4、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.5、如图,已知正方形ABCD的边长为6,ECD边上一点,将绕点A旋转至,连接,若,则的长等于______.三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1  90°的圆周角所对的弦是直径.(如图)(推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°. 求证:线段AB是⊙O的直径. 请你结合图①写出推论1的证明过程.(深入探究)如图②,点ABCD均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为          (拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点EBC的中点,连结DE. 若AB,则DE的长为           2、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积.3、如图,已知AB是⊙O的直径,,连接OC,弦,直线CDBA的延长线于点(1)求证:直线CD是⊙O的切线;(2)若,求OC的长.4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.5、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD. -参考答案-一、单选题1、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.2、D【详解】解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;.不是轴对称图形,是中心对称图形,故本选项不符合题意;.是轴对称图形,不是中心对称图形,故本选项不符合题意;.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.4、D【分析】根据题意先求出弦AC的长,再过点OOBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点OOBAC于点BAB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=rRtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32解得r=厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5、B【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.6、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.7、B【分析】直接根据扇形的面积公式计算即可.【详解】故选:B.【点睛】本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.8、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,OP需要满足的条件是OP>4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.9、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.10、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.二、填空题1、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为内切圆半径面积公式:,即为所以,可得:,所以直径为:故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;2、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.3、【分析】设点G的坐标为,过点A轴交于点M,过点轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.【详解】设点G的坐标为,过点A轴交于点M,过点轴交于点N如图所示:∵点A绕点G顺时针旋转90°后得到点轴,轴,中,中,由勾股定理得:解得:故答案为:【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.4、【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BOOCOA由题意得:△BOC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出5、4【分析】在正方形ABCD中,BE′=DE=2,所以在直角三角形ECE中,EC=8,CE=4,利用勾股定理求得EE′的长即可.【详解】解:在正方形ABCD中,∠C=90°,由旋转得,BE′=DE=2,EC=8,CE=4,∴在直角三角形ECE中,EE′==4故答案为4【点睛】本题考查了正方形的性质、旋转的性质与勾股定理的知识,正确的利用旋转和正方形的性质得出直角三角形边长并正确的应用勾股定理是解题的关键.三、解答题1、【推论证明】见解析;【深入探究】;【拓展应用】【分析】推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;拓展应用:连接AE,作CFDEDE于点F,首先根据等边三角形三线合一的性质求出,然后证明出AECD四点共圆,然后根据同弧或等弧所对的圆周角相等求出,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵ABO三点共线,又∵点O是圆心,AB是⊙O的直径;深入探究:如图所示,连接AB∵∠ACB=90°AB是⊙O的直径∵∠ACD=60°∴在中,拓展应用:如图所示,连接AE,作CFDEDE于点F∵△ABC是等边三角形,点EBC的中点又∵以AC为底边在三角形ABC外作等腰直角三角形ACD∴点AECD四点都在以AC为直径的圆上,CFDE是等腰直角三角形,解得:∴在中,【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.2、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.(1)解:如图所示,点的坐标为,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为∵旋转180°后的的面积等于的面积, 的面积为4.【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.3、(1)见解析;(2)【分析】(1)连接OD,由ADOCOD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;(2)由ADOC可得△EAD∽△EOC,可得,再由△OBC≌△ODCBC=CD从而可得,则可求得OC的长.【详解】(1)连接OD又∵中,又∵的切线.(2)∵又∵OC=15【点睛】本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.5、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,∴∠ABD=∠CBDAD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试同步训练题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试巩固练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共31页。

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共33页。试卷主要包含了已知⊙O的半径为4,,则点A在,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map