|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试卷(精选含详解)
    立即下载
    加入资料篮
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试卷(精选含详解)01
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试卷(精选含详解)02
    2022年最新强化训练沪科版九年级数学下册第24章圆专题攻克试卷(精选含详解)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪科版第24章 圆综合与测试巩固练习

    展开
    这是一份初中沪科版第24章 圆综合与测试巩固练习,共31页。试卷主要包含了如图,是的直径,,下列判断正确的个数有等内容,欢迎下载使用。

    沪科版九年级数学下册第24章圆专题攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列图形中,既是中心对称图形也是轴对称图形的是(   

    A. B. C. D.

    2、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4

    3、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(   

    A.30° B.60°

    C.90° D.120°

    4、如图,的直径,上的两点,若,则   

    A.15° B.20° C.25° D.30°

    5、的边经过圆心与圆相切于点,若,则的大小等于(   

    A. B. C. D.

    6、下列判断正确的个数有(   

    ①直径是圆中最大的弦;

    ②长度相等的两条弧一定是等弧;

    ③半径相等的两个圆是等圆;

    ④弧分优弧和劣弧;

    ⑤同一条弦所对的两条弧一定是等弧.

    A.1个 B.2个 C.3个 D.4个

    7、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm

    8、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(   

    A. B. C. D.

    9、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    10、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(   

    A.6 B. C.3 D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,半圆O中,直径AB=30,弦CDAB长为6π,则由ACAD围成的阴影部分面积为_______.

    2、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.

    3、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.

    4、如图,点D为边长是的等边△ABCAB左侧一动点,不与点AB重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.

    5、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.

    三、解答题(5小题,每小题10分,共计50分)

    1、在平面直角坐标系xOy中,的半径为2.点PQ外两点,给出如下定义:若上存在点MN,使得PQMN为顶点的四边形为矩形,则称点PQ的“成对关联点”.

    (1)如图,点ABCD横、纵坐标都是整数.在点BCD中,与点A组成的“成对关联点”的点是______;

    (2)点在第一象限,点F与点E关于x轴对称.若点EF的“成对关联点”,直接写出t的取值范围;

    (3)点Gy轴上.若直线上存在点H,使得点GH的“成对关联点”,直接写出点G的纵坐标的取值范围.

    2、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).

    3、如图,已知的直径,的切线,C为切点,于点E平分

    (1)求证:

    (2)求的长.

    4、如图,已知AB是⊙O的直径,⊙OBC的中点D,且

    (1)求证:DE是⊙O的切线;

    (2)若,求的半径.

    5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).

    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;

    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;

    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.

    故选:A.

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    2、D

    【分析】

    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.

    【详解】

    解:∵在RtABC中,AB=6,BC=8,

    由旋转性质可知,AB= AB'=6,BC= B'C'=8,

    B'C=10-6=4,

    RtB'C'C中,

    故选:D.

    【点睛】

    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.

    3、B

    【分析】

    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.

    【详解】

    解:因为每次旋转相同角度,旋转了六次,

    且旋转了六次刚好旋转了一周为360°,

    所以每次旋转相同角度 .

    故选:B.

    【点睛】

    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.

    4、C

    【分析】

    根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.

    【详解】

    解:∵∠BOC=130°,

    ∴∠BDC=BOC=65°,

    AB是⊙O的直径,

    ∴∠ADB=90°,

    ∴∠ADC=90°-65°=25°,

    故选:C.

    【点睛】

    本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.

    5、A

    【分析】

    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.

    【详解】

    解:连接

    与圆相切于点

    故选:A.

    【点睛】

    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    6、B

    【详解】

    ①直径是圆中最大的弦;故①正确,

    ②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确

    ③半径相等的两个圆是等圆;故③正确

    ④弧分优弧、劣弧和半圆,故④不正确

    ⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.

    综上所述,正确的有①③

    故选B

    【点睛】

    本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.

    7、D

    【分析】

    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.

    【详解】

    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过

    设半径为r,即OA=OB=AB=r

    OM=OA•sin∠OAB=

    ∵圆O的内接正六边形的面积为(cm2),

    ∴△AOB的面积为(cm2),

    解得r=4,

    故选:D.

    【点睛】

    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.

    8、D

    【分析】

    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.

    【详解】

    解:设ABCD交于点E

    AB是⊙O的直径,弦CDABCD=2,如图,

    CE=CD=,∠CEO=∠DEB=90°,

    ∵∠CDB=30°,

    ∴∠COB=2∠CDB=60°,

    ∴∠OCE=30°,

    又∵,即

    在△OCE和△BDE中,

    ∴△OCE≌△BDEAAS),

    ∴阴影部分的面积S=S扇形COB=

    故选D.

    【点睛】

    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.

    9、D

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    10、D

    【分析】

    如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为

    【详解】

    解:如图所示,设圆的圆心为O,连接OCOB

    ACAB都是圆O的切线,

    ∴∠OCA=∠OBA=90°,OC=OB

    又∵OA=OA

    RtOCARtOBAHL),

    ∴∠OAC=∠OAB

    ∵∠DAC=60°,

    ∴∠AOB=30°,

    OA=2AB=6,

    ∴圆O的直径为

    故选D.

    【点睛】

    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.

    二、填空题

    1、45

    【分析】

    连接OCOD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.

    【详解】

    解:连接OCOD

    ∵直径AB=30,

    OC=OD=

    CDAB

    SACD=SOCD

    长为6π

    ∴阴影部分的面积为S阴影=S扇形OCD=

    故答案为:45π

    【点睛】

    本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.

    2、相切或相交

    【详解】

    首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案.

    【分析】

    解:∵x2﹣5x+6=0,

    x﹣2)(x﹣3)=0,

    解得:x1=2,x2=3,

    ∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,

    ∴当半径为2时,直线l与圆O的的位置关系是相切,

    当半径为3时,直线l与圆O的的位置关系是相交,

    综上所述,直线l与圆O的的位置关系是相切或相交.

    故答案为:相切或相交.

    【点睛】

    本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.

    3、1+

    【分析】

    过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理

    得出CD=AE=,根据勾股定理CO=,当OD=CDOC最大,OC=此时解方程即可.

    【详解】

    解:过点CCDx轴于D,过BBEx轴于E,连结OB,设OD=x

    ∵点A(3,0)

    AD=x-3,

    为等腰直角三角形,

    AB=AC,∠BAC=90°,

    ∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,

    CDx轴, BEx轴,

    ∴∠BEA=∠ADC=90°,

    ∴∠ACD+∠CAD=90°,

    ∴∠ACD=∠BAE

    在△BAE和△ACD中,

    ∴△BAE≌△ACD(AAS),

    BE=AD=x-3,EA=DC

    在Rt△EBO中,OB=1,BE= x-3,

    根据勾股定理

    EA=OE+OA=

    CD=AE=

    CO=

    OD=CDOC最大,OC=,此时

    (舍去),

    ∴线段OC长度的最大值为

    故答案为:1+

    【点睛】

    本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.

    4、

    【分析】

    根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.

    【详解】

    解:根据题意作等边三角形的外接圆,

    D在运动过程中始终保持∠ADB=120°不变,

    在圆上运动,

    当点运动到的中点时,四边形ADBC的面积S的最大值,

    过点的垂线交于点,如图:

    中,

    解得:

    过点的垂线交于

    故答案是:

    【点睛】

    本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.

    5、

    【分析】

    如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.

    【详解】

    解:如图,连接 (即)分别在优弧与劣弧上,

    PMPN分别与⊙O相切于AB两点,

    故答案为:

    【点睛】

    本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.

    三、解答题

    1、(1)BC;(2);(3)

    【分析】

    (1)根据图形可确定与点A组成的“成对关联点”的点;

    (2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;

    (3)分类讨论:点G上,点G的下方和点G的上方,构造的“成对关联点”,即可求出的取值范围.

    【详解】

    (1)如图所示:

    在点BCD中,与点A组成的“成对关联点”的点是BC

    故答案为:BC

    (2)∵

    在直线上,

    ∵点F与点E关于x轴对称,

    在直线

    如下图所示:

    直线分别交于点,与直线分别交于

    由题可得:

    当点E在线段上时,有的“成对关联点”

    (3)

    如图,当点G上时,轴,在上不存在这样的矩形;

    如图,当点G下方时,也不存在这样的矩形;

    如图,当点G上方时,存在这样的矩形GMNH

    当恰好只能构成一个矩形时,

    ,直线y轴相交于点K

    ,即

    解得:(舍),

    综上:当时,点GH的“成对关联点”.

    【点睛】

    本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.

    2、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.

    【分析】

    先画出点AB关于点C中心对称的点A',B',再连接A',B',C即可解题.

    【详解】

    解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.

    【点睛】

    本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.

    3、(1)90°;(2)AC=DE=1

    【分析】

    (1)如图,可知

    (2)可求出的长;可求出的长.

    【详解】

    解(1)证明如图所示,连接

    是直径,的切线,平分

    (2)解∵

    【点睛】

    本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.

    4、(1)证明见解析;(2)

    【分析】

    (1)连接只要证明即可.此题可运用三角形的中位线定理证,因为,所以

    (2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和的长,即可根据中位线性质求出的长,即的半径长.

    【详解】

    (1)证明:连接

    因为的中点,的中点,

    是圆的半径,

    的切线.

    (2)如图,

    ,且

    的半径长为

    【点睛】

    本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.

    5、(1)图见解析;A1(3,3);(2)见解析

    【分析】

    (1)直接利用平移的性质得出对应点位置进而得出答案;

    (2)直接利用旋转的性质得出对应点位置进而得出答案.

    【详解】

    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.

    【点睛】

    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.

     

    相关试卷

    沪科版九年级下册第24章 圆综合与测试当堂检测题: 这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后作业题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共32页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试习题: 这是一份数学九年级下册第24章 圆综合与测试习题,共38页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map