搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪科版九年级数学下册第24章圆章节训练试题

    精品试题沪科版九年级数学下册第24章圆章节训练试题第1页
    精品试题沪科版九年级数学下册第24章圆章节训练试题第2页
    精品试题沪科版九年级数学下册第24章圆章节训练试题第3页
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪科版第24章 圆综合与测试课堂检测

    展开

    这是一份初中沪科版第24章 圆综合与测试课堂检测,共28页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
    A.25°B.80°C.130°D.100°
    2、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    3、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
    A.B.C.D.
    4、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
    A.B.1C.2D.
    5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3πB.6πC.12πD.18π
    6、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
    A.50°B.70°C.110°D.120°
    7、如图,是的直径,弦,垂足为,若,则( )
    A.5B.8C.9D.10
    8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).
    A.90°B.100°C.120°D.150°
    9、如图,是△ABC的外接圆,已知,则的大小为( )
    A.55°B.60°C.65°D.75°
    10、平面直角坐标系中点关于原点对称的点的坐标是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.
    2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)
    3、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    4、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.
    5、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)
    2、已知:如图,A为上的一点.
    求作:过点A且与相切的一条直线.
    作法:①连接OA;
    ②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;
    ③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);
    ④作直线PA.
    直线PA即为所求.
    (1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
    (2)完成下面的证明.
    证明:连接BA.
    由作法可知.
    ∴点A在以OP为直径的圆上.
    ∴( )(填推理的依据).
    ∵OA是的半径,
    ∴直线PA与相切( )(填推理的依据).
    3、如图,是的直径,四边形内接于,是的中点,交的延长线于点.
    (1)求证:是的切线;
    (2)若,,求的长.
    4、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
    (1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;
    (2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
    5、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
    (1)求证:CE是⊙O的切线;
    (2)若AB的长为6,求CE的长.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠B+∠ADC=180°,
    ∵∠ADC=130°,
    ∴∠B=50°,
    由圆周角定理得,∠AOC=2∠B=100°,
    故选:D.
    【点睛】
    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    2、C
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:C.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,
    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    5、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    6、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    7、C
    【分析】
    连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
    【详解】
    解:如图,连接,
    ∵是的直径,弦,

    设的半径为,则
    在中,,

    解得

    故选C
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    8、D
    【分析】
    将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
    【详解】
    解:为等边三角形,

    可将绕点逆时针旋转得,
    如图,连接,
    ,,,
    为等边三角形,
    ,,
    在中,,,,

    为直角三角形,且,

    故选:D.
    【点睛】
    本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    9、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    10、B
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:平面直角坐标系中点关于原点对称的点的坐标是
    故选B
    【点睛】
    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
    二、填空题
    1、
    【分析】
    连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.
    【详解】
    解:如下图所示,连接OC交AB于点D,再连接OA.
    ∵折叠后弧的中点与圆心重叠,
    ∴,OD=CD.
    ∴AD=BD.
    ∵圆形纸片的半径为10cm,
    ∴OA=OC=10cm.
    ∴OD=5cm.
    ∴cm.
    ∴BD=cm.
    ∴cm.
    故答案为:.
    【点睛】
    本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.
    2、
    【分析】
    先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
    【详解】
    过C作CD⊥OA于D
    ∵一次函数的图象与x轴交于点A,与y轴交于点B,
    ∴当时,,B点坐标为(0,1)
    当时,,A点坐标为

    ∵作的外接圆,
    ∴线段AB中点C的坐标为,
    ∴三角形BOC是等边三角形

    ∵C的坐标为


    故答案为:
    【点睛】
    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
    3、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,
    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    4、
    【分析】
    如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.
    【详解】
    解:如图,作BH⊥x轴于H.
    ∵C(0,4),K(2,0),
    ∴OC=4,OK=2,
    ∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,
    ∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,
    ∴∠ACO=∠BAH,
    ∴△ACO≌△BAH(AAS),
    ∴BH=OA=m,AH=OC=4,
    ∴B(m+4,m),
    令x=m+4,y=m,
    ∴y=x﹣4,
    ∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,


    作KM⊥EF于M,过作于 则
    根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),
    故答案为:(3,﹣1)
    【点睛】
    本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.
    5、60
    【分析】
    根据弧长公式求解即可.
    【详解】
    解:,
    解得,,
    故答案为:60.
    【点睛】
    本题考查了弧长公式,灵活应用弧长公式是解题的关键.
    三、解答题
    1、见解析
    【分析】
    先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
    【详解】
    如图,直线AB就是所求作的,
    (作法不唯一,作出一条即可,需要有作图痕迹)
    【点睛】
    本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    2、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理
    【分析】
    (1)根据所给的几何语言作出对应的图形即可;
    (2)根据圆周角定理和切线的判定定理解答即可.
    【详解】
    解:(1)补全图形如图所示,直线AP即为所求作;
    (2)证明:连接BA,
    由作法可知,
    ∴点A在以OP为直径的圆上,
    ∴(直径所对的圆周角是直角),
    ∵OA是的半径,
    ∴直线PA与相切(切线的判定定理),
    故答案为:直径所对的圆周角是直角,切线的判定定理.
    【点睛】
    本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.
    3、(1)见详解;(2)
    【分析】
    (1)连接OD,由圆周角定理可得∠AOD=∠ABC,从而得OD∥BC,进而即可得到结论;
    (2)连接AC,交OD于点F,利用勾股定理可得AC,,再证明四边形DFCE是矩形,进而即可求解.
    【详解】
    (1)证明:连接OD,
    ∵是的中点,
    ∴∠ABC=2∠ABD,
    ∵∠AOD=2∠ABD,
    ∴∠AOD=∠ABC,
    ∴OD∥BC,
    ∵,
    ∴,
    ∴是的切线;
    (2)连接AC,交OD于点F,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∴AC=,
    ∵是的中点,
    ∴OD⊥AC,AF=CF=3,
    ∴,
    ∴DF=5-4=1,
    ∵∠E=∠EDF=∠DFC=90°,
    ∴四边形DFCE是矩形,
    ∴DE=CF=3,CE=DF=1,
    ∴,
    ∴AD=CD=,
    ∵∠ADB=90°,

    【点睛】
    本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键.
    4、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析
    【分析】
    (1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;
    (2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.
    【详解】
    解:(1)由题意画以下图,连接EP,
    ∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,
    ∴∠DPB=∠DEB=90°,
    ∵PB=2,
    ∴ ,
    ∵∠DBE=30°,

    (2)①点P在点A、B之间,
    由(1)的图根据同弧所对的圆周角相等,可得:
    ∠ADP=∠FBP,
    又∵△PBD等腰直角三角形,
    ∴∠DPB=∠APD=90°,DP=BP,
    在△APD和△FPB中
    ∴△APD≌△FPB
    ∴AP=FP,
    ∵AP+PB=AB
    ∴FP+PB=AB,
    ∴FP=AB-PB,
    ②点P在点B的右侧,如下图:
    ∵△PBD等腰直角三角形,
    ∴∠DPB=∠APF=90°,DP=BP,
    ∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,
    ∴∠PBF=∠PDA,
    在△APD和△FPB中
    ∴△APD≌△FPB
    ∴AP=FP,
    ∴AB+PB=AP,
    ∴AB+PB=PF,
    ∴PF= AB+PB.
    综上所述,FP=AB-PB或PF= AB+PB.
    【点睛】
    本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.
    5、(1)见解析;(2)3
    【分析】
    (1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
    (2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
    【详解】
    解:(1)证明:如图连接OC、OB.
    ∵是等边三角形



    又 ∵



    ∴与⊙O相切;
    (2)∵四边形ABCD是⊙O的内接四边形,


    ∵D为的中点,





    【点睛】
    本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.

    相关试卷

    2021学年第24章 圆综合与测试巩固练习:

    这是一份2021学年第24章 圆综合与测试巩固练习,共28页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试同步达标检测题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步达标检测题,共36页。

    数学九年级下册第24章 圆综合与测试练习题:

    这是一份数学九年级下册第24章 圆综合与测试练习题,共30页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map