搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪科版九年级数学下册第26章概率初步专题攻克试题(含答案解析)

    2021-2022学年度沪科版九年级数学下册第26章概率初步专题攻克试题(含答案解析)第1页
    2021-2022学年度沪科版九年级数学下册第26章概率初步专题攻克试题(含答案解析)第2页
    2021-2022学年度沪科版九年级数学下册第26章概率初步专题攻克试题(含答案解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第26章 概率初步综合与测试课时作业

    展开

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时作业,共21页。试卷主要包含了下列事件是必然事件的是,下列说法正确的有,下列事件,你认为是必然事件的是,不透明的布袋内装有形状等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是(    A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨2、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是(    A. B. C. D.13、下列事件中,属于随机事件的是(    A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形C.如果一个三角形有两个角相等,那么两个角所对的边也相等D.有两组对应边和一组对应角分别相等的两个三角形全等4、下列事件是必然事件的是(  )A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天5、下列说法正确的有(    ①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.②无理数之间.③从这五个数中随机抽取一个数,抽到无理数的概率是④一元二次方程有两个不相等的实数根.⑤若边形的内角和是外角和的倍,则它是八边形.A. B. C. D.6、下列事件,你认为是必然事件的是(    A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的7、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为(      A. B. C. D.8、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为(    A. B. C. D.9、下列事件是必然事件的是(   )A.明天一定是晴天 B.购买一张彩票中奖C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同10、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是(  )A.15 B.12 C.9 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:种子数量10030050010003000出芽数量992824809802910随着实验种子数量的增加,可以估计A种子出芽的概率是 _____.2、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为______4、从分别标有数字﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值不小于2的概率是_______.5、任意翻一下2021年日历,翻出1月6日的概率为__________;翻出4月31日的概率为__________.三、解答题(5小题,每小题10分,共计50分)1、小王和小刘两人在玩转盘游戏时,游戏规则:同时转动AB两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小王获胜;若指针所指两个区域的数字之积为2的倍数,则小刘获胜,如果指针落在分割线上,则视为无效,需重新转动转盘.(1)请用列表或画树状图的方法表示所有可能的结果.(2)这个游戏规则对双方公平吗?请说明理由.2、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.3、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)王老师被分配到“就餐监督岗”的概率为     (2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.4、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有AB两个选项,第9题和第10题都有ABC三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大5、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录 特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800 (1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由. -参考答案-一、单选题1、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.2、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是共有3个,∴抽到的图案是中心对称图形的概率是故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.3、D【分析】根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.【详解】A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.故选:D.【点睛】本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.4、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a2≥0,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.5、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.【详解】解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;无理数之间,正确,故本选项符合题意;这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;正确的有个;故选:【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.6、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;.故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.8、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:  (业,睡)(业,机)(业,读)(业,体)(睡,业) (睡,机)(睡,读)(睡,体)(机,业)(机,睡) (机,读)(机,体)(读,业)(读,睡)(读,机) (读,体)(体,业)(体,睡)(体,机)(体,读) 根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,∴ 抽到“作业”和“手机”的概率为:故选:C.【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.9、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.10、A【分析】由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n【详解】∵摸到红球的频率稳定在20%,∴摸到红球的概率为20%,a个小球中红球只有3个,∴摸到红球的频率为.解得故选A.【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.二、填空题1、【分析】根据概率的公式解题:A种子出芽的概率=A种子出芽数量÷玉米种子总数量.【详解】解:故答案为:【点睛】本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间.2、【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是设口袋中大约有x个白球,则解得x=20,经检验x=20是原方程的解,估计口袋中白球的个数约为20个.故答案为:20.【点睛】本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.3、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率.【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为故答案为:【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键.4、【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有3种情况,直接利用概率公式求解即可求得答案.【详解】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,一共有七中可能情况,其中所抽卡片上的数的绝对值不小于2的有﹣3,-2,2,3四种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:故答案为【点睛】本题考查列举法求概率,掌握列举法求概率方法,熟记概率公式是解题关键.5、    0    【分析】根据概率的公式,即可求解.【详解】解:∵2021年共有365天,∴翻出1月6日的概率为∵2021年4月没有31日,∴翻出4月31日的概率为0.故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键.三、解答题1、(1)见解析;(2)不公平,理由见解析【分析】(1)根据列表法求得所有可能结果;(2)根据列表分别求得小王和小刘获胜的概率进而可得结论【详解】(1)列表如下 1231和为2,积为1和为3,积为2和为4,积为32和为3,积为2和为4,积为4和为5,积为6(2)不公平,理由如下,根据列表可知,共有6种等可能情形,其中和为2的倍数有3种情形,小王获胜的概率为积为2的倍数有4种情形,小刘获胜的概率为两者概率不一致,故不公平【点睛】本题考查了概率的应用,列表法求概率是解题的关键.2、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是(2)列表如下, 55885\558585555\858585858\888585888\共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键.3、(1);(2)李老师和王老师被分配到同一个监督岗的概率为【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,∴王老师被分配到“就餐监督岗”的概率=故答案为:(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,∴李老师和王老师被分配到同一个监督岗的概率=【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率.4、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【分析】(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.【详解】(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,共有6种等可能的结果数,其中三题全答对的结果数为1所以小明顺利通关的概率=故通关的概率为(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:共有6种等可能的结果数,其中三题全答对的结果数为1,所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C共有8种等可能的结果数,其中三题全答对的结果数为1所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.(2)①根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为千克(2)①设销售量y与售价x的函数关系式为由题意可得函数图像过两点的函数关系式为代入,∴当售价定为16.5元/千克,日销售量为875千克②依题意得:12天内售完9000千克柑橘故日销售量至少为:(千克)解得设利润为w元,则∴对称轴为∴当wx的增大而增大∴当时销售利润最大,最大利润为(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式. 

    相关试卷

    2020-2021学年第26章 概率初步综合与测试达标测试:

    这是一份2020-2021学年第26章 概率初步综合与测试达标测试,共20页。

    初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试:

    这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试,共20页。试卷主要包含了下列说法中正确的是,下列说法正确的是等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试当堂检测题:

    这是一份数学九年级下册第26章 概率初步综合与测试当堂检测题,共17页。试卷主要包含了下列判断正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map