数学九年级下册第26章 概率初步综合与测试同步测试题
展开
这是一份数学九年级下册第26章 概率初步综合与测试同步测试题,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是( )A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯2、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是( )移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9150.9050.8970.902A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B.可以用试验次数累计最多时的频率作为概率的估计值C.由此估计这种幼苗在此条件下成活的概率约为0.9D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株3、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )A. B. C. D.4、成语“守株待兔”描述的这个事件是( )A.必然事件 B.确定事件 C.不可能事件 D.随机事件5、下列说法正确的是( )A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨6、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).A. B. C. D.7、下列成语描述的事件为随机事件的是( )A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升8、下列说法正确的是( )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同9、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是( )A. B. C. D.10、下列说法中,正确的是( )A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.2、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _____.3、为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校开展了远程网络教学,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论.小宁和小娟都参加了远程网络教学活动,请求出某一时间内两人恰好选择同一种学习方式的概率为______.4、已如一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.若往口袋中再放入2个白球,求从口袋中随机取出一个白球的概率________5、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率______.三、解答题(5小题,每小题10分,共计50分)1、电影《长津湖》以抗美援朝战争第二次战役中的长津湖战役为背景,讲述71年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌的真实历史.为纪念历史,缅怀先烈,我校团委将电影中的四位历史英雄人物头像制成编号为A、B、C、D的四张卡片(除编号和头像外其余完全相同),活动时学生根据所抽取的卡片来讲述他们在影片中波澜壮阔、可歌可泣的历史事迹.规则如下:先将四张卡片背面朝上,洗匀放好,小强从中随机抽取一张,然后放回并洗匀,小叶再从中随机抽取一张.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.2、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.3、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .(2)若甲、乙均可在本层移动.①黑色方块所构拼图是中心对称图形的概率是 .②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.4、防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从乙测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.5、2021年教育部出台了关于中小学生作业、睡眠、手机、读物、体质五个方面的管理,简称“五项管理”,这是推进立德树人,促进学生全面发展的重大举措.某班为培养学生的阅读习惯,利用课外时间开展以“走近名著”为主题的读书活动,有6名学生喜欢四大名著,其中2人(记为,)喜欢《西游记),2人(记为,)喜欢《红楼梦》,1人(记为C)喜欢《水浒传》,1人(记为D)喜欢《三国演义》.(1)如果从这6名学生中随机抽取1人担任读书活动宣传员,求抽到的学生恰好喜欢《西游记》的概率.(2)如果从这6名学生中随机抽取2人担任读书活动宣传员,求抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率. -参考答案-一、单选题1、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.2、D【分析】根据频率估计概率逐项判断即可得.【详解】解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D.【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.3、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,∴恰好有两次正面朝上的事件概率是:.故选C.【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.4、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:“守株待兔”是随机事件.故选D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.6、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下: 跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.7、C【分析】根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.【详解】解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;D、旭日东升,是必然会发生的,不是随机事件,不符合题意;故选C.【点睛】本题主要考查了随机事件的定义,熟知定义是解题的关键.8、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.9、B【分析】用黑色的小球个数除以球的总个数即可解题.【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.10、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.故选择B.【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.二、填空题1、##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.2、【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.【详解】解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于5的概率是: .故答案为:.【点睛】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.3、##【分析】用分别表示:在线阅读、在线听课、在线答疑、在线讨论,再利用列表的方法求解学习方式中所有的等可能的结果数,再确定两人选择相同的学习方式的结果数,再利用概率公式可得答案.【详解】解:用分别表示:在线阅读、在线听课、在线答疑、在线讨论,列表如下: 由表格信息可得:所有的等可能的结果数有16种,而两人选择相同的学习分式的可能的结果数有4种,所以:某一时间内两人恰好选择同一种学习方式的概率为: 故答案为:【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,熟练的列表得到所有的等可能的结果数是解本题的关键.4、【分析】先确定口袋中的球数,任意取出一个,求出等可能的所有情况,再从中找出满足条件的白球的可能情况,让后利用概率公式计算即可.【详解】解:往口袋中再放入2个白球,此时口袋中一共有球9个,任取一个球出现等可能情况一共有9中可能,其中有白球5个,任取一个球是白球的共有5中情况,∴从口袋中随机取出一个白球的概率P=,故答案为:.【点睛】本题考查列举法求简单概率,掌握列举法求简单概率,抓住列举所有等可能情况,与满足条件的情况,记住概率公式是解题关键.5、【分析】利用概率公式直接求解即可.【详解】解:∵袋中有形状材料均相同的白球2个, 红球4个,共6个球, ∴任意摸一个球是红球的概率 . 故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1、【分析】根据题意列出树状图,根据概率公式即可求解.【详解】由题意做树状图如下:故小强和小叶抽到的两张卡片恰好是同一英雄人物的概率为.【点睛】此题考查了用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.2、(1)袋中黄球的个数为1个;(2)【分析】(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;【详解】解:(1)设袋中黄球的个数为x个,根据题意得,解得x=1,经检验,x=1是方程的根,所以袋中黄球的个数为1个;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,所以两次摸出的都是红球的概率.【点睛】本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.3、(1);(2)①;②.【分析】(1)直接由概率公式求解即可;(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;②画树状图,再由概率公式求解即可.【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是;②画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,∴黑色方块所构拼图是轴对称图形的概率=.【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.4、(1);(2)【分析】(1)根据题意直接利用概率公式求解即可得出答案;(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得.【详解】解:(1)小明从乙测温通道通过的概率是,故答案为:;(2)列表格如下: 甲乙丙甲甲,甲乙,甲丙,甲乙甲,乙乙,乙丙,乙C甲,丙乙,丙丙,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.5、(1)抽到的学生恰好喜欢《西游记》的概率为;(2)抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.【分析】(1)根据题意及概率公式可直接进行求解;(2)根据题意列出表格,然后问题可求解.【详解】解:(1)由题意得:抽到的学生恰好喜欢《西游记》的概率为;(2)由题意可得列表如下: CD/√√√√√√/√√√√√√/√√√√√√/√√C√√√√/√D√√√√√/∴由表格可知共有30种等可能的情况,其中恰好1人喜欢《西游记》1人喜欢《红楼梦》的可能性有8种,∴抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.【点睛】本题主要考查概率,熟练掌握利用列表法求解概率是解题的关键.
相关试卷
这是一份2020-2021学年第26章 概率初步综合与测试巩固练习,共19页。试卷主要包含了不透明的布袋内装有形状,在一个不透明的盒子中装有红球等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课堂检测,共18页。试卷主要包含了下列说法正确的是,下列事件,你认为是必然事件的是等内容,欢迎下载使用。
这是一份2020-2021学年第26章 概率初步综合与测试同步测试题,共18页。试卷主要包含了下列事件中,是必然事件的是,下列事件中,属于必然事件的是,下列事件是必然发生的事件是,下列说法正确的是等内容,欢迎下载使用。