![2021-2022学年基础强化沪科版九年级数学下册第26章概率初步同步练习练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12687780/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第26章概率初步同步练习练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12687780/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪科版九年级数学下册第26章概率初步同步练习练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12687780/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试习题
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共18页。试卷主要包含了下列说法中正确的是,下列说法正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
2、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
A.B.C.D.1
3、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件
4、下列说法中正确的是( )
A.一组数据2、3、3、5、5、6,这组数据的众数是3
B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1
C.为了解长沙市区全年水质情况,适合采用全面调查
D.画出一个三角形,其内角和是180°为必然事件
5、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )
A.B.C.D.
6、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A.B.C.D.1
7、下列关于随机事件的概率描述正确的是( )
A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”
B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖
C.随机事件发生的概率大于或等于0,小于或等于1
D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率
8、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )
A.B.C.D.
9、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
10、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )
A.两张卡片的数字之和等于1B.两张卡片的数字之和大于1
C.两张卡片的数字之和等于6D.两张卡片的数字之和大于7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.
2、在一个不透明的布袋中装有红球、白球共20个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.65,则布袋中红球的个数大约是________.
3、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.
4、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是______.
5、农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:
下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子;②当实验种子数里为100时,两种种子的发芽率均为0.96所以它发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98.其中不合理的是 _____.(只填序号)
三、解答题(5小题,每小题10分,共计50分)
1、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.
(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;
(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.
2、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.
(1)甲从中随机选取A套餐的概率是 ;
(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.
3、若关于x的一元二次方程ax2+bx+1=0,且a﹣b+3=0,该方程有一个根为1.
(1)求a的值及另一个根;
(2)若把该一元二次方程的二次项系数,一次项系数,常数项做成卡片,不放回地随意摸出两张卡片,求两张卡片的数字一样的概率.
4、盲盒为消费市场注入了活力.某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中.
(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;
(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率.
5、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.
(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;
(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.
-参考答案-
一、单选题
1、D
【分析】
根据随机事件的定义,对选项中的事件进行判断即可.
【详解】
解:A.“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;
B.“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
C.“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;
D.“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意.
故选:D
【点睛】
本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键.
2、C
【分析】
根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
,,,
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
3、D
【分析】
必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
4、D
【分析】
根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.
【详解】
A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;
B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;
D. 画出一个三角形,其内角和是180°为必然事件,正确;
故选D.
【点睛】
此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.
5、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【详解】
解:列表得:
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
6、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
7、D
【分析】
根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【详解】
解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;
随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;
在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;
故选:D.
【点睛】
本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、C
【分析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,
∴随机抽取一个球是黄球的概率是.
故选C.
【点睛】
本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.
9、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
10、C
【分析】
将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.
【详解】
解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;
B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;
C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;
D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、
【分析】
袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.
【详解】
解:袋中有五个小球,3个红球,2个白球,形状材料均相同,
从中任意摸一个球,摸出红球的概率为,
故答案是:.
【点睛】
本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).
2、13
【分析】
总数量乘以摸到红球的频率的稳定值即可.
【详解】
解:根据题意知,布袋中红球的个数大约是20×0.65=13,
故答案为:13.
【点睛】
本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
3、
【分析】
根据简单概率公式进行计算即可.
【详解】
解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.
则指针对准红色区域的可能性大小是
故答案为:
【点睛】
本题考查了几何概率,立即题意是解题的关键.
4、
【分析】
根据列表法求概率即可.
【详解】
解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,
共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则
小东和小华都抽到游泳项目的概率为
故答案为:
【点睛】
本题考查了列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
5、②
【分析】
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
【详解】
①由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以①中的说法是合理的.
②由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以②中的说法不合理;
③由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以③中的说法是合理的;
故答案为:②
【点睛】
本题考查了根据频率估计概率,理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.
三、解答题
1、(1);(2).
【分析】
(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;
(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可.
【详解】
解:(1)列表如下:
所有等可能的情况数为16种,两人抽到同一景点的结果有4种,
所以两人抽到同一景点的概率为.
(2)列表如下:
所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,
所以两人抽到动物园和森林公园的概率为.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、(1);(2).
【分析】
(1)直接根据概率公式求解即可;
(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.
【详解】
解:(1)由题意,
∵推出A,B,C,D四种礼盒套餐,
∴甲从中随机选取A套餐的概率是;
故答案为:.
(2)根据题意,画树状图为:
共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,
∴甲、乙2人选取相同套餐的概率为:.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
3、(1),另一个根为;(2)两张卡片的图案一样的概率是.
【分析】
(1)原方程化成ax2+(a+3)x+1=0,把x=1代入计算即可求得a的值,再利用根与系数的关系可求得另一个根;
(2)得到二次项系数为2,一次项系数-1,常数项-1,利用枚举法即可求解.
【详解】
解:(1)∵a﹣b+3=0,即b=a+3,
∴原方程为ax2+(a+3)x+1=0,
∵该方程有一个根为1,
∴a+(a+3) +1=0,
解得:,
∴方程为-2x2+x+1=0,即2x2-x-1=0,
设方程的另一个根为x1,
∴x1=;
答:,另一个根为;
(2)∵方程为2x2-x-1=0,
∴二次项系数为2,一次项系数-1,常数项-1,
把2,-1,-1做成卡片,不放回地随意摸出两张卡片,有(2,-1),(2,-1),(-1,-1)三种可能出现的结果,图案相同的情况有1种,
故两张卡片的图案一样的概率是.
【点睛】
本题考查了一元二次方程的解、根与系数的关系,利用枚举法求概率,求概率的时候,应注意题中所说的随机抽取两张意思是抽取一张不放回再抽取一张,与抽取一张放回再抽一张不一样.
4、(1)抽中多接口优盘的概率为;(2)P(抽中商品总价值不低于80元).
【分析】
(1)利用列举法求解即可;
(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可.
【详解】
解:(1)∵随机抽取一个盲盒可以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,
∴抽到多接口优盘;
(2)将蓝牙耳机记为A,多接口U盘记为、,迷你音箱记作C.
则从4个盲盒中随机抽取2个的树状图如下:
由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种.
∴P(抽中商品总价值不低于80元).
【点睛】
本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.
5、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)画出树状图即可得解;
【详解】
(1)根据题意可得,小球的颜色是白色的概率是;
故答案是:;
(2)根据题意画出树状图如下:
则两次摸出的小球颜色相同的概率为.
【点睛】
本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.
种子数量
100
200
500
1000
2000
A
出芽种子数
96
165
491
984
1965
发芽率
0.96
0.83
0.98
0.98
0.98
B
出芽种子数
96
192
486
977
1946
发芽率
0.96
0.96
0.97
0.98
0.97
锁1
锁2
钥匙1
(锁1,钥匙1)
(锁2,钥匙1)
钥匙2
(锁1,钥匙2)
(锁2,钥匙2)
钥匙3
(锁1,钥匙3)
(锁2,钥匙3)
A
B
C
A
AA
AB
AC
B
BA
BB
BC
C
CA
CB
CC
D
J
S
F
D
(D,D)
(J,D)
(S,D)
(F,D)
J
(D,J)
(J,J)
(S,J)
(F,J)
S
(D,S)
(J,S)
(S,S)
(F,S)
F
(D,F)
(J,F)
(S,F)
(F,F)
D
J
S
F
D
(J,D)
(S,D)
(F,D)
J
(D,J)
(S,J)
(F,J)
S
(D,S)
(J,S)
(F,S)
F
(D,F)
(J,F)
(S,F)
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试综合训练题,共20页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了下列事件是必然事件的是,在一个不透明的盒子中装有红球,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份2021学年第26章 概率初步综合与测试同步测试题,共17页。试卷主要包含了一个不透明的口袋里有红,下列说法正确的是,下列事件,你认为是必然事件的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)