北京课改版七年级下册第八章 因式分解综合与测试同步测试题
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共15页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+12、把多项式x3﹣2x2+x分解因式结果正确的是( )A.x(x2﹣2x) B.x2(x﹣2)C.x(x+1)(x﹣1) D.x(x﹣1)23、下列因式分解正确的是( )A. B.C. D.4、下列各组多项式中,没有公因式的是( )A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b25、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)6、下列分解因式正确的是( )A. B.C. D.7、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,308、下列各式从左到右的变形属于因式分解的是( )A. B.C. D.9、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)10、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式__________.2、填空:x2-2x+__________=(x-__________)2.3、分解因式:______.4、因式分解:______.5、分解因式:________.三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)n2(m﹣2)﹣n(2﹣m)(2)(a2+4)2﹣16a2.2、分解因式:.3、分解因式:4xy2﹣4x2y﹣y3.4、因式分解:(1)(2)5、因式分解(1)(2)(x-1)(x-3)-8 ---------参考答案-----------一、单选题1、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.2、D【解析】【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x3﹣2x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.3、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、D【解析】【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键.5、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.6、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.7、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.8、B【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】A. 化为分式的积,不是因式分解,故该选项不符合题意;B. ,是因式分解,故该选项符合题意;C. ,不是积的形式,故该选项不符合题意; D. ,不是积的形式,故该选项不符合题意;故选B【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.10、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).二、填空题1、【解析】【分析】直接利用提公因式法分解因式即可.【详解】解:.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、 1 1【解析】【分析】根据配方法填空即可,加上一次项系数一半的平方.【详解】故答案为:1,1【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.3、m(m+1)(m-1)【解析】【分析】先提公因式,再用平方差公式法分解因式.【详解】故答案为m(m+1)(m-1).【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.4、【解析】【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.5、##【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.三、解答题1、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.2、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式===【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.3、-y(2x-y)2【解析】【分析】先提取公因式-y,再利用完全平方公式分解因式即可得答案.【详解】4xy2﹣4x2y﹣y3=-y(4x2-4xy+y2)=-y(2x-y)2.【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、(1);(2)【解析】【分析】(1)先提取公因式,再十字相乘法进行因式分解.(2)先去括号,再十字相乘法进行因式分解.【详解】解:(1)==(2)==【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.5、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解.【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x-1)(x-3)-8=x2-4x+3-8=x2-4x-5=(x-5)(x+1).【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了当n为自然数时,,已知x,y满足,则的值为,能利用进行因式分解的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了下列因式分解正确的是,下列各因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。