2021学年第八章 因式分解综合与测试精练
展开这是一份2021学年第八章 因式分解综合与测试精练,共15页。试卷主要包含了下列因式分解错误的是,当n为自然数时,等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x,y满足,则的值为( )
A.—5 B.4 C.5 D.25
2、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).
A.勤学 B.爱科学 C.我爱理科 D.我爱科学
3、多项式与的公因式是( )
A. B. C. D.
4、下列各式从左到右的变形是因式分解的是( )
A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2
C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)
5、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
6、下列因式分解错误的是( )
A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)
C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)
7、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
8、下列各式能用公式法因式分解的是( ).
A. B. C. D.
9、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )
A.被5整除 B.被6整除 C.被7整除 D.被8整除
10、下列各式的因式分解中正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把多项式分解因式结果是______.
2、分解因式:________.
3、在实数范围内分解因式:x2﹣3xy﹣y2=___.
4、分解因式:________.
5、实数范围内分解因式:x4+3x2﹣10=___.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1)4x2-16; (2)16-m2;
(3) ; (4)9a2(x﹣y)+4b2(y﹣x).
2、已知,.求值:(1);(2).
3、因式分解:
(1)
(2)
4、分解因式:
(1)4x2y﹣4xy2+y3.
(2)(a2+9)2﹣36a2.
5、因式分解:ab4﹣4ab3+4ab2.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.
【详解】
解:.
故选:A.
【点睛】
本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.
2、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
3、B
【解析】
【分析】
先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.
【详解】
解:,
,
则多项式与的公因式是,
故选:B.
【点睛】
本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.
4、D
【解析】
【分析】
根据因式分解的定义对各选项进行逐一分析即可.
【详解】
解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;
D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;
故选:D.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
5、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
6、C
【解析】
【分析】
提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.
【详解】
解:显然对于A,B,D正确,不乖合题意,
对于C:右边≠左边,故C错误,符合题意;
故选:C.
【点睛】
本题考查了因式分解,熟练掌因式分解的方法是解题的关键.
7、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
8、A
【解析】
【分析】
利用完全平方公式和平方差公式对各个选项进行判断即可.
【详解】
解:A、,故本选项正确;
B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;
C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;
D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.
故选:A.
【点睛】
本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.
9、D
【解析】
【分析】
先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.
【详解】
解: (n+1)2﹣(n﹣3)2
n为自然数
所以(n+1)2﹣(n﹣3)2一定能被8整除,
故选D
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.
10、D
【解析】
【分析】
根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.
【详解】
A -a2+ab-ac=-a(a-b+c) ,故本选项错误;
B 9xyz-6x2y2=3xy(3z-2xy),故本选项错误;
C 3a2x-6bx+3x=3x(a2-2b+1),故本选项错误;
D ,故本选项正确.
故选:D.
【点睛】
本题考查提公因式法分解因式,准确确定公因式是求解的关键.
二、填空题
1、
【解析】
【分析】
利用平方差公式分解得到结果,即可做出判断.
【详解】
解:
=
=
故答案为:
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
2、3 a(a-2)
【解析】
【分析】
分析提取公因式3a,进而分解因式即可.
【详解】
3a²-6a=3a(a-2),
故答案为3a(a-2).
【点睛】
此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.
3、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
4、
【解析】
【分析】
原式提取公因式,再利用平方差公式分解即可.
【详解】
解:原式=,
=
故答案为:.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、
【解析】
【分析】
先用十字相乘分解,再用平方差公式分解即可.
【详解】
解:x4+3x2﹣10
=
=
故答案为:.
【点睛】
本题考查了实数范围内因式分解,解题关键是熟练运用因式分解的方法在实数范围内进行分解.
三、解答题
1、(1);(2);(3);(4).
【解析】
【分析】
(1)(4)先提取公因式,再利用平方差公式继续分解即可;
(2)(3)利用平方差公式分解即可.
【详解】
解:(1)4x2-16=4(x2-4)=4(x+2)(x-2);
(2)16-m2=(4+)( 4-);
(3);
(4)9a2(x﹣y)+4b2(y﹣x)
=9a2(x﹣y)-4b2(x﹣y)
=(x﹣y)(9a2-4b2)
.
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
2、(1);(2)
【解析】
【分析】
(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;
(2)由可得:由,可得再把分解因式即可得到答案.
【详解】
解:(1) ,,
则
(2)
,
【点睛】
本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
3、(1);(2)
【解析】
【分析】
(1)根据题意,首先提取公因式,再根据完全平方公式的性质计算,即可得到答案;
(2)根据题意,首先提取公因式,再根据平方差公式的性质计算,即可得到答案.
【详解】
(1)
;
(2)
.
【点睛】
本题考查了因式分解的知识;解题的关键是熟练掌握完全平方公式、平方差公式的性质,从而完成求解.
4、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.
【解析】
【分析】
(1)原式提取公因式y,再利用完全平方公式分解即可;
(2)原式先利用平方差公式,进一步用完全平方公式分解即可.
【详解】
解:(1)原式=y(4x2﹣4xy+y2)
=y(2x﹣y)2;
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、
【解析】
【分析】
先提取公因式,再利用公式法分解即可;
【详解】
原式;
【点睛】
本题主要考查了利用提取公因式法和公式法进行因式分解,准确运用公式是解题的关键.
相关试卷
这是一份北京课改版第八章 因式分解综合与测试随堂练习题,共17页。试卷主要包含了下列变形,属因式分解的是,下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试练习题,共16页。试卷主要包含了已知,,那么的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列因式分解错误的是,如图,长与宽分别为a等内容,欢迎下载使用。