![京改版七年级数学下册第八章因式分解难点解析试卷(精选)01](http://img-preview.51jiaoxi.com/2/3/12687866/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第八章因式分解难点解析试卷(精选)02](http://img-preview.51jiaoxi.com/2/3/12687866/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第八章因式分解难点解析试卷(精选)03](http://img-preview.51jiaoxi.com/2/3/12687866/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第八章 因式分解综合与测试练习
展开京改版七年级数学下册第八章因式分解难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
2、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
3、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
4、下列各式从左至右是因式分解的是( )
A. B.
C. D.
5、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
6、下列因式分解正确的是( )
A. B.
C. D.
7、若,则E是( )
A. B. C. D.
8、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
9、把分解因式的结果是( ).
A. B.
C. D.
10、能利用进行因式分解的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于的二次三项式因式分解为,则的值为________.
2、分解因式:______.
3、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.
4、如果,,那么代数式的值是________.
5、因式分解:2a2-4a-6=________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
2、将下列多项式分解因式:
(1)
(2)
3、将下列多项式进行因式分解:
(1);
(2).
4、分解因式:
(1)
(2)
5、把下列各式因式分解:
(1) (2)
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
2、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
3、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
4、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
6、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、C
【解析】
【分析】
观察等式的右边,提取的是,故可把变成,即左边=.
【详解】
解:,
∴,
故选C.
【点睛】
本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法.
8、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
9、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
10、A
【解析】
【分析】
根据平方差公式进行因式分解即可得.
【详解】
解:A、,此项符合题意;
B、不能利用进行因式分解,此项不符题意;
C、不能利用进行因式分解,此项不符题意;
D、不能利用进行因式分解,此项不符题意;
故选:A.
【点睛】
本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键.
二、填空题
1、1
【解析】
【分析】
把括号打开,求出的值,计算即可.
【详解】
解:∵,
∴,
,
故答案为:1.
【点睛】
本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.
2、m(m+1)(m-1)
【解析】
【分析】
先提公因式,再用平方差公式法分解因式.
【详解】
故答案为m(m+1)(m-1).
【点睛】
本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.
3、
【解析】
【分析】
利用十字相乘法分解因式即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.
4、-64
【解析】
【分析】
先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.
【详解】
解:=
=
∵,,
∴原式=2×(-4)×8
=-64,
故答案是:-64.
【点睛】
本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.
5、2(a-3)(a+1)## 2(a+1)(a-3)
【解析】
【分析】
提取公因式2,再用十字相乘法分解因式即可.
【详解】
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点睛】
本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
三、解答题
1、
【解析】
【分析】
把原式分组成,然后利用完全平方公式和平方差公式化简即可.
【详解】
解:原式
【点睛】
本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.
2、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
3、(1);(2).
【解析】
【分析】
(1)提取公因式然后利用完全平方公式进行因式分解即可;
(2)提取公因式然后利用平方差公式进行因式分解即可.
【详解】
解:(1)原式;
(2)原式.
【点睛】
此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.
4、(1)(2)
【解析】
【分析】
(1)先提出9,再根据平方差公式因式分解即可;
(2)先根据整式的乘法计算,再根据完全平方公式因式分解
【详解】
(1)
(2)
【点睛】
本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键.
5、(1);(2)
【解析】
【分析】
(1) 提取公因式,即可得到答案;
(2)先把原式化为,再提取公因式,即可得到答案 .
【详解】
(1),
原式 ;
(2) ,
原式,
.
【点睛】
本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.
初中数学北京课改版七年级下册第八章 因式分解综合与测试课后作业题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共15页。试卷主要包含了将分解因式,正确的是,已知的值为5,那么代数式的值是等内容,欢迎下载使用。
初中数学第八章 因式分解综合与测试当堂检测题: 这是一份初中数学第八章 因式分解综合与测试当堂检测题,共15页。试卷主要包含了下列因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
初中第八章 因式分解综合与测试课后练习题: 这是一份初中第八章 因式分解综合与测试课后练习题,共15页。试卷主要包含了下列各式的因式分解中正确的是,若x2+ax+9=等内容,欢迎下载使用。