![必考点解析京改版七年级数学下册第八章因式分解重点解析试卷(含答案详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12687891/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第八章因式分解重点解析试卷(含答案详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12687891/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第八章因式分解重点解析试卷(含答案详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12687891/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题
展开这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题,共17页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
2、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
3、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )
A.被5整除 B.被6整除 C.被7整除 D.被8整除
4、把分解因式的结果是( ).
A. B.
C. D.
5、下列各组式子中,没有公因式的一组是( )
A.2xy与x B.(a﹣b)2与a﹣b
C.c﹣d与2(d﹣c) D.x﹣y与x+y
6、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
7、可以被24和31之间某三个整数整除,这三个数是( )
A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,30
8、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).
A.勤学 B.爱科学 C.我爱理科 D.我爱科学
9、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
10、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若x+y=5,xy=6,则x2y﹣xy2的值为 ___.
2、因式分解:______.
3、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.
4、已知a2+a-1=0,则a3+2a2+2021=________.
5、在实数范围内因式分解:x2﹣3=___,3x2﹣5x+2=___.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解
(1)n2(m﹣2)﹣n(2﹣m)
(2)(a2+4)2﹣16a2.
2、(Ⅰ)先化简,再求值:,其中,;
(Ⅱ)分解因式:① ;② .
3、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:x2﹣6x﹣7;
(2)分解因式:a2+4ab﹣5b2
4、仔细阅读下面例题,解答问题:
例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.
5、(1)计算:2·+;
(2)因式分解:3+12+12x.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
2、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
3、D
【解析】
【分析】
先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.
【详解】
解: (n+1)2﹣(n﹣3)2
n为自然数
所以(n+1)2﹣(n﹣3)2一定能被8整除,
故选D
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.
4、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
5、D
【解析】
【分析】
根据公因式是各项中的公共因式逐项判断即可.
【详解】
解:A、2xy与x有公因式x,不符合题意;
B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;
C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;
D、x﹣y与x+y没有公因式,符合题意,
故选:D.
【点睛】
本题考查公因式,熟练掌握确定公因式的方法是解答的关键.
6、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
7、B
【解析】
【分析】
先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.
【详解】
解:
所以可以被26,27,28三个整数整除,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.
8、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
9、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
10、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
二、填空题
1、6或-6##-6或6
【解析】
【分析】
先利用完全平方公式并根据已知条件求出x-y的值,再利用提公因式法和平方差公式分解因式,然后整体代入数据计算.
【详解】
解:∵x+y=5,xy=6,
∴(x-y)2=(x+y)2-4xy=1,
∴x-y=±1,
∴x2y-xy2=xy(x-y)=6(x-y),
当x-y=1时,原式=6×1=6;
当x-y=-1时,原式=6×(-1)=-6.
故答案为:6或-6.
【点睛】
本题主要考查了提公因式法分解因式,根据完全平方式的两个公式之间的关系求出(x-y)的值是解本题的关键,也是难点.
2、
【解析】
【分析】
先提取公因式,再利用平方差公式计算即可得出答案.
【详解】
解:.
【点睛】
本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤.
3、
【解析】
【分析】
利用十字相乘法分解因式即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.
4、2022
【解析】
【分析】
将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.
【详解】
解:∵a2+a-1=0,
∴a2=1-a、a2+a=1,
∴a3+2a2+2021,
=a•a2+2(1-a)+2021,
=a(1-a)+2-2a+2021,
=a-a2-2a+2023,
=-a2-a+2023,
=-(a2+a)+2023,
=-1+2023=2022.
故答案为:2022
【点睛】
本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.
5、 (3x-2)(x-1)
【解析】
【分析】
前一个利用平方差公式分解;后一个利用十字相乘法因式分解即可.
【详解】
解:x2-3= x2-;
3x2-5x+2=(3x-2)(x-1).
故答案为:;(3x-2)(x-1).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
三、解答题
1、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.
【解析】
【分析】
(1)提取公因式,进行因式分解即可;
(2)根据平方差公式以及完全平方公式因式分解即可.
【详解】
(1)n2(m﹣2)﹣n(2﹣m)
=n2(m﹣2)+n(m﹣2)
=n(m﹣2)(n+1);
(2)(a2+4)2﹣16a2
=(a2+4)2﹣(4a)2
=(a2+4a+4)(a2﹣4a+4)
=(a+2)2(a﹣2)2
【点睛】
本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
2、(Ⅰ),;(Ⅱ)①;②
【解析】
【分析】
(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.
(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.
【详解】
解:(Ⅰ)原式
当、时
原式.
(Ⅱ)①
.
②
.
【点睛】
本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.
3、(1)(x+1)(x-7);(2)(a+5b)( a-b)
【解析】
【分析】
(1)仿照例题方法分解因式即可;
(2)仿照例题方法分解因式即可;
【详解】
解:(1)x2﹣6x﹣7
= x2﹣6x+9-16
=(x-3)2-42
=(x-3+4)(x-3-4)
=(x+1)(x-7);
(2)a2+4ab﹣5b2
= a2+4ab+4b2﹣9b2
=(a+2b)2-(3b)2
=(a+2b +3b)(a+2b-3b)
=(a+5b)( a-b).
【点睛】
本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键.
4、另一个因式为(2x+13),k的值为65.
【解析】
【分析】
设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.
【详解】
解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)
则2x2+3x﹣k=2x2+(a﹣10)x﹣5a
∴,
解得:a=13,k=65.
故另一个因式为(2x+13),k的值为65.
【点睛】
此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.
5、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了下列因式分解中,正确的是,多项式与的公因式是等内容,欢迎下载使用。
这是一份2020-2021学年第八章 因式分解综合与测试课时作业,共16页。试卷主要包含了下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试同步训练题,共17页。试卷主要包含了下列分解因式正确的是,当n为自然数时,,下列因式分解正确的是等内容,欢迎下载使用。