数学七年级下册第八章 因式分解综合与测试随堂练习题
展开京改版七年级数学下册第八章因式分解章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
2、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )
A.an﹣1 B.2an C.2an﹣1 D.2an+1
3、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
4、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
5、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
6、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
7、下列各式中,由左向右的变形是分解因式的是( )
A. B.
C. D.
8、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
9、下列多项式中能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.x2+(﹣y)2
C.(﹣x)2+(﹣y)2 D.﹣m2+1
10、下列四个式子从左到右的变形是因式分解的为( )
A.(x﹣y)(﹣x﹣y)=y2﹣x2
B.a2+2ab+b2﹣1=(a+b)2﹣1
C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)
D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:_________.
2、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.
3、若关于的二次三项式因式分解为,则的值为________.
4、已知ab=2,a﹣b=﹣4,则a2b﹣ab2=___.
5、因式分解: _______________________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1)
(2)
2、已知xy=5,x2y﹣xy2﹣x+y=40.
(1)求x﹣y的值.
(2)求x2+y2的值.
3、因式分解.
(1)
(2)
(3)
4、(1)按下表已填的完成表中的空白处代数式的值:
| ||
, | 1 |
|
, |
| 46 |
, |
|
|
(2)比较两代数式计算结果,请写出你发现的与有什么关系?
(3)利用你发现的结论,求:的值.
5、(1)计算:2·+;
(2)因式分解:3+12+12x.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
2、C
【解析】
【分析】
根据提取公因式的方法计算即可;
【详解】
原式,
∴2an﹣1﹣4an+1的公因式是,即;
故选C.
【点睛】
本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.
3、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
4、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
5、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
6、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
7、B
【解析】
【分析】
判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.
【详解】
解:A、,不是因式分解;故A错误;
B、,是因式分解;故B正确;
C、,故C错误;
D、,不是因式分解,故D错误;
故选:B.
【点睛】
本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.
8、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
9、D
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.
【详解】
解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;
D、,可以利用平方差公式进行分解,符合题意;
故选:D.
【点睛】
本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.
10、C
【解析】
【分析】
根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
【详解】
解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;
C选项,符合因式分解的定义,符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.
二、填空题
1、
【解析】
【分析】
原式提取公因式y2,再利用平方差公式分解即可.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
2、
【解析】
【分析】
利用十字相乘法分解因式即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.
3、1
【解析】
【分析】
把括号打开,求出的值,计算即可.
【详解】
解:∵,
∴,
,
故答案为:1.
【点睛】
本题考查了整式的乘法和因式分解,解题关键是熟练运用整式乘法法则进行计算.
4、-8
【解析】
【分析】
将提取公因式,在整体代入求值即可.
【详解】
∵,,
∴.
故答案为:-8.
【点睛】
本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键.
5、
【解析】
【分析】
根据提取公因式和平方差公式进行分解即可;
【详解】
原式;
故答案是:.
【点睛】
本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.
三、解答题
1、(1)4xy(y+1)2;(2)-5(a-b)2
【解析】
【分析】
(1)提公因式后利用完全平方公式分解即可;
(2)提公因式后利用完全平方公式分解即可.
【详解】
(1),
,
=4xy(y+1)2;
(2),
,
=-5(a-b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.
2、(1)x﹣y=10;(2)x2+y2=110.
【解析】
【分析】
(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.
(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.
【详解】
解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,
∴x2y﹣xy2﹣x+y
=xy(x﹣y)﹣(x﹣y)
=(xy﹣1)(x﹣y)
∵xy=5,
∴(5﹣1)(x﹣y)=40,
∴x﹣y=10.
(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.
【点睛】
本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.
3、(1);(2);(3)
【解析】
【分析】
(1)由题意直接根据完全平方差公式即可进行因式分解;
(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;
(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.
【详解】
解:(1)
(2)
(3)
【点睛】
本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键.
4、(1)见解析;(2);(3)1
【解析】
【分析】
(1)把每组的值分别代入与进行计算,再填表即可;
(2)观察计算结果,再归纳出结论即可;
(3)利用结论可得 再代入进行简便运算即可.
【详解】
解:(1)填表如下:
| ||
, | 1 | 1 |
, | 16 | 16 |
, | 9 | 9 |
(2)观察上表的计算结果归纳可得:
(3)
=
==1
【点睛】
本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.
5、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
北京课改版七年级下册第八章 因式分解综合与测试课后测评: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列各因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。
2021学年第八章 因式分解综合与测试综合训练题: 这是一份2021学年第八章 因式分解综合与测试综合训练题
初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了已知c<a<b<0,若M=|a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。