初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题
展开京改版七年级数学下册第九章数据的收集与表示定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的( )
A.平均数 B.众数 C.中位数 D.众数或中位数
2、下列调查适合作抽样调查的是( )
A.了解义乌电视台“同年哥讲新闻”栏目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
D.“神七”载人飞船发射前对重要零部件的检查
3、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
4、已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是( )
A.4,4 B.3.5,4 C.3,4 D.2,4
5、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
6、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
7、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的( )
A.平均数 B.加权平均数 C.众数 D.中位数
8、下列说法中正确的是( )
A.样本7,7,6,5,4的众数是2
B.样本2,2,3,4,5,6的中位数是4
C.样本39,41,45,45不存在众数
D.5,4,5,7,5的众数和中位数相等
9、下列调查中,最适合抽样调查的是( )
A.调查某校七年级一班学生的课余体育运动情况 B.调查某班学生早餐是否有喝牛奶的习惯
C.调查某种灯泡的使用寿命 D.调查某校足球队员的身高
10、某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )
A.152,134 B.146,146 C.146,140 D.152,140
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某班同学进行知识竞赛,将所得成绩整理成如图所示的统计图,则这次竞赛成绩的众数是_____分.
2、数据1、2、4、4、3、5、l、4、4、3、2、3、4、5,它们的众数是____、中位数是____、平均数是_______.
3、5月1日至7日,某市每日最高气温如图所示,则中位数是 ______.
4、、、三种糖果售价分别为每千克10元,11元,14元.若将种糖果3kg,种糖果2kg,种糖果1kg混在一起,则售价应定为每千克______元.
5、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.
三、解答题(5小题,每小题10分,共计50分)
1、为考察甲、乙两种农作物的长势,研究人员分别抽取了10株苗,测得它们的高度(单位:cm)如下:
甲:9,14,11,12,9,13,10,8,12,8;
乙:8,13,12,11,9,12,7,7,9,11
你认为哪种农作物长得高一些?说明理由.
2、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 | 非常不满意 | 不满意 | 有一点满意 | 满意 |
人数 | 200 | 160 | 32 | 8 |
百分比 |
|
|
|
|
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
3、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
4、八年级一班共有学生46人,学生的平均身高是1.58m,小明身高1.59m,但小明说他的身高在全班是中等偏下的,班上有25位同学比他高,20位同学比他矮,这可能吗?
5、某中学为选拔一名选手参加我市“学宪法 讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:
得分表
项目 选手 | 服装 | 普通话 | 主题 | 演讲技巧 |
小明 | 85分 | 70分 | 80分 | 85分 |
小华 | 90分 | 75分 | 75分 | 80分 |
结合以上信息,回答下列问题:
(1)小明在选拔赛中四个项目所得分数的众数是 ,中位数是 ;
(2)评分时按统计表中各项权数考评.
①求出演讲技巧项目对应扇形的圆心角的大小.
②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.
【详解】
解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,
故选B
【点睛】
本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.
2、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;
B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;
C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;
D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、C
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这组数据从小到大排列:1,2,3,4,4,
最中间的数是3,
则这组数据的中位数是3;
4出现了2次,出现的次数最多,则众数是4;
故选:C.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
5、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
6、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
7、D
【解析】
【分析】
根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.
【详解】
解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.
故选:D.
【点睛】
本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.
8、D
【解析】
【分析】
根据众数定义和中位数定义对各选项进行一一分析判定即可.
【详解】
A. 样本7,7,6,5,4的重复次数最多的数是7,所以众数是7,故选项A不正确;
B. 样本2,2,3,4,5,6的处于中间位置的两个数是3和4,所以中位数是,故选项B不正确;
C. 样本39,41,45,45重复次数最多的数字是45,故选项C不正确;
D. 5,4,5,7,5,将数据重新排序为4,5,5,5,7,重复次数最多的众数是5和中位数为5,所以众数和中位数相等,故选项D正确.
故选D.
【点睛】
本题考查众数与中位数,掌握众数与中位数定义,一组数据中重复次数最多的数据是众数,将一组数据从小到大排序后,处于中间位置,或中间位置上两个数据的平均数是中位数是解题关键.
9、C
【解析】
【分析】
根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得.
【详解】
解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;
B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;
C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;
D、“调查某校足球队员的身高”适合全面调查,此项不符题意;
故选:C.
【点睛】
本题考查了抽样调查与全面调查,熟记定义是解题关键.
10、C
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
解:出现了2次,出现的次数最多,
这组数据的众数是146个;
把这些数从小到大排列为:121,122,134,146,146,152,
则中位数是(个.
故选:.
【点睛】
本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.
二、填空题
1、70
【解析】
【分析】
根据众数的定义:出现次数最多的数据为众数即可求解.
【详解】
由统计图可得这次竞赛成绩的众数是70分
故答案为70.
【点睛】
此题主要考查统计调查的应用,解题的关键是熟知众数的定义.
2、 4; 3.5; 3.21;
【解析】
【分析】
根据平均数、众数与中位数的定义求解.所有数据的和除以14得平均数;将这组数据从小到大的顺序排列,最中间的两个数的平均数为中位数;4出现的次数最多为众数.
【详解】
数据中4出现了5次,出现的次数最多,所以众数是4;把数据重新排列1、1、2、2、3、3、3、4、4、4、4、4、5、5,最中间的两个数是3和4,所以这组数据的中位数是3.5;这组数据的平均数是.
【点睛】
本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
3、27℃
【解析】
【分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:把这些数从小到大排列为:23,25,26,27,30,33,33,
∴最中间的数是27,
则中位数是27℃.
故答案为:27℃.
【点睛】
本题主要考查中位数,熟练掌握求一组数据的中位数是解题的关键.
4、11
【解析】
【分析】
根据加权平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.
【详解】
解:售价应定为每千克(元.
故答案为:11.
【点睛】
本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求10、11、14这三个数的平均数.
5、88.8
【解析】
【分析】
根据加权平均数的求解方法求解即可.
【详解】
解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),
故答案为:88.8.
【点睛】
本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.
三、解答题
1、甲,理由见解析
【解析】
【分析】
求出两组数据的平均数,比较大小即可.
【详解】
解:(cm);
(cm);
甲、乙两种农作物的平均高度分别为10.6cm和9.9cm,因此可以认为甲种农作物长得高一些.
【点睛】
本题考查了平均数的计算,解题关键是会熟练运用平均数公式进行计算.
2、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【解析】
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
3、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
4、可能
【解析】
【分析】
利用平均数与总体的关系来考虑.
【详解】
解:可能.
班上有25个同学比他高,即在平均线以下的同学占少数,但比小明高的同学的身高比平均身高高,可幅度不大,比小明低的同学的身高比平均身高低的幅度大,故还是有可能的.
【点睛】
本题不是直接求平均数,而是利用平均数的概念综合来分析,平均数受极值的影响较大.
5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛
【解析】
【分析】
(1)根据众数和中位数的定义求解即可;
(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.
【详解】
解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是=82.5(分);
(2)①1-5%-15%-40%=40%
36040%=144°
答:演讲技巧项目对应扇形的圆心角为144°;
②小明分数为:
小华分数为:
80.75>77.75
∴小明更优秀,应派出小明代表学校参加比赛
【点睛】
本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.
北京课改版七年级下册第九章 数据的收集与表示综合与测试精练: 这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试精练,共18页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
初中第九章 数据的收集与表示综合与测试课时训练: 这是一份初中第九章 数据的收集与表示综合与测试课时训练,共18页。
数学七年级下册第九章 数据的收集与表示综合与测试课后测评: 这是一份数学七年级下册第九章 数据的收集与表示综合与测试课后测评,共19页。试卷主要包含了下列调查中,最适合采用全面调查,下列说法中正确的个数是个.,一组数据x等内容,欢迎下载使用。