![2022年必考点解析沪科版九年级数学下册第26章概率初步定向测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12688507/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步定向测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12688507/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步定向测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12688507/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第26章 概率初步综合与测试复习练习题
展开
这是一份2020-2021学年第26章 概率初步综合与测试复习练习题,共19页。试卷主要包含了下列说法正确的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是( )A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间2、下列说法正确的是( )A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨3、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为74、下列说法正确的是( )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C.连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D.在同一年出生的400个同学中至少会有2个同学的生日相同5、下列事件中,属于必然事件的是( )A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边6、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程有解的概率是( )A. B. C. D.7、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )A. B. C. D.8、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是( )A.1 B. C. D.9、下列说法正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近10、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.2、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.3、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).4、小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是________.5、从3,0,,,这五个数中,随机抽取一个数作为m的值,则使函数的图象经过一、三象限,且使关于x的方程有实数根的概率是__________.三、解答题(5小题,每小题10分,共计50分)1、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.2、不透明的盒子中有四个形状、大小、质地完全相同的小球,标号分别为1, 2,3, 4.(1)从盒子中随机摸出一个小球,标号是奇数的概率是 ;(2)先从盒子中随机摸出一个小球,放回后摇匀,再随机摸出一个小球,记两次摸出球的标号之和为m,则m可能取2~8中的任何一个整数,分析哪个整数出现的可能性最大.3、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为 ;(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率.4、已知关于x的一元二次方程x2+bx+c=0.(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c=0有两个相等的实数根的概率.5、如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等(指针停在分割线上再转一次).(1)现随机转动转盘一次,停止后,指针指向1的概率为_______.(2)小明和小华利用这个转盘做游戏,若采用下列游规则:随机转动转盘两次、停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为对双方公平吗?请用列表或画树状图的方法说明理由. -参考答案-一、单选题1、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.2、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.3、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.4、D【分析】A中掷一枚质地均匀的骰子,出现点数为的结果相等,故可得出掷得的点数为的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设人中前个人生日均不相同,而剩余的个人的生日会有与个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为的概率是,此选项错误,不符合题意;B一个袋子里有个球从中随机摸出一个球再放回,小军摸了次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是,此选项错误,不符合题意;D在同一年出生的个同学中至少会有个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.5、D【分析】根据事件发生的可能性大小判断即可.【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解.【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B.【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数.7、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.8、D【分析】根据概率公式求解即可.【详解】∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,∴.故选:D.【点睛】本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.9、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.10、A【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:∵总可能结果有4种,摸到标号大于2的结果有2种,∴从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.二、填空题1、【分析】袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.【详解】解:袋中有五个小球,3个红球,2个白球,形状材料均相同,从中任意摸一个球,摸出红球的概率为,故答案是:.【点睛】本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).2、【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.【详解】解:∵当且,一元二次方程有实数根∴且从,0,1,2这四个数中任取一个数,符合条件的结果有所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.3、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.【详解】解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=而 ∴找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.4、【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率.【详解】第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种则小明正好穿的是相同的一双袜子的概率是故答案为:【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率.5、【分析】由正比例函数的图象及其性质可判断3,0,,,五个数均符合,由一元二次方程根的判别式可判断出只有,,三个数符合题意,故概率为.【详解】∵的图象经过一、三象限∴即3,0,,,这五个数均符合关于x的方程其中则令解得时关于x的方程有实数根故,,三个数符合题意则P=.故答案为:.【点睛】本题考查了正比例函数图象及其性质和一元二次方程根的判别式.当时正比例函数图象过第一、三象限,时正比例函数图象过第二、四象限;使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a,b,c的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.当时,方程有两个相等的实数根,不能说方程只有一个根.三、解答题1、【分析】通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.【详解】解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,∴甲、乙两同学选取同一部电影的概率为.【点睛】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.2、(1);(2)出现5的可能性最大.【分析】(1)利用列举法求解即可;(2)先列表找到所有的等可能性的结果数,然后找到每个整数出现的结果数,由此求解即可.【详解】解:(1)从四个小球中随机摸出一个球摸出的小球的编号可以为1、2、3、4一共四种等可能性的结果数,其中摸到标号为奇数的有:摸到标号为1的和摸到标号为2的一共两种,∴从盒子中随机摸出一个小球,标号是奇数的概率是;(2)列表如下: 第一次1234第二次12345234563456745678由表格可知一共有16种等可能性的结果数,其中两次标号之和为2的有1种,两次标号之和为3的有2种,两次标号之和为4的有3种,两次标号之和为5的有4种,两次标号之和为6的有3种,两次标号之和为7的有2种,两次标号之和为8的有1种,∴出现5的可能性最大.【点睛】本题主要考查了列举法求解概率,树状图法或列举法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.3、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图计算即可;【详解】(1)由题可得,球上的汉字刚好是“书”的概率为;故答案是:;(2)根据题意画出树状图如下:则取出的两个球上的汉字能组成“华一”的概率为.【点睛】本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键.4、(1)证明见解析;(2).【分析】(1)把c=2b﹣1代入x2+bx+c=0.利用一元二次方程根的判别式即可得答案;(2)根据方程x2+bx+c=0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案.【详解】(1)∵c=2b﹣1,∴x2+bx+c=x2+bx+2b=0.∵==≥0,∴方程一定有两个实数根.(2)∵方程x2+bx+c=0有两个相等的实数根,∴=0,∴,画树状图如下:由树状图可知:所有可能情况数为12种,符合的情况数为2种,∴b、c的值使方程x2+bx+c=0有两个相等的实数根的概率为=.【点睛】本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程(),根的判别式为△=,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.5、(1)(2)不公平,理由见解析【分析】(1)利用概率公式直接进行计算即可;(2)先画树状图,得到所有的等可能的结果数与积为偶数的结果数,再利用概率公式计算即可.(1)解:随机转动转盘一次,停止后,指针指向1的概率为: 故答案为:(2)解:如图,画树状图如下:由树状图可得:所有的等可能的结果数有个,积为偶数的结果数有个,所以小明胜的概率为: 小华胜的概率为: 而 所以游戏不公平.【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“画树状图的方法”是解本题的关键.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试同步训练题,共18页。试卷主要包含了下列说法正确的是.,下列说法中正确的是,下列说法错误的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后练习题,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试练习题,共19页。试卷主要包含了下列事件中,属于必然事件的是,下列说法正确的有,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)