![2022年必考点解析沪科版九年级数学下册第26章概率初步定向练习试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12688551/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步定向练习试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12688551/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步定向练习试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12688551/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试巩固练习,共19页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于“明天是晴天的概率为90%”,下列说法正确的是( ).A.明天一定是晴天 B.明天一定不是晴天C.明天90%的地方是晴天 D.明天是晴天的可能性很大2、 “翻开数学书,恰好翻到第16页”,这个事件是( )A.随机事件 B.必然事件 C.不可能事件 D.确定事件3、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )A. B. C. D.4、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A.0.92 B.0.905 C.0.03 D.0.95、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是( )A.1 B. C. D.6、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是( )A. B. C. D.7、下列说法中正确的是( )A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件8、下列关于随机事件的概率描述正确的是( )A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率9、将7个分别标有数字﹣3,﹣2,﹣1,0,1,2,3的小球放到一个不透明的袋子里,它们大小相同,随机摸取一个小球将其标记的数字记为m,则使得二次函数y=﹣x2﹣3x+m﹣2与x轴有交点,且关于x的分式方程有解的概率是( )A. B. C. D.10、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )A.15 B.12 C.9 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.2、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.3、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_________(填“大于”“小于”或“等于”)是白球的可能性.4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.5、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为_______.三、解答题(5小题,每小题10分,共计50分)1、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.2、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.(1)甲从中随机选取A套餐的概率是 ;(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.3、在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张.(1)求第二次取出的数字小于第一次取出的数字的概率.(2)请你根据题意设计某个简单的等可能性事件,并求出这个事件的概率.4、 “垃圾分类”进校园,锦江教育出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.(1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)①必然事件 ②不可能事件 ③随机事件(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.A.有害垃圾 B.厨余垃圾C.可回收垃圾 D.其他垃圾5、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”.小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是________,那么成活率是________(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是________(3)若小王移植10000棵这种树苗,则可能成活________;(4)若小王移植20000棵这种树苗,则一定成活18000棵.此结论正确吗?说明理由. -参考答案-一、单选题1、D【分析】根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.【详解】解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,故选:D.【点睛】题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.2、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.3、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可.【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,∴点数大于2且小于5的有3或4,∴向上一面的点数大于2且小于5的概率是=,故选:C.【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键.4、A【分析】根据频数估计概率可直接进行求解.【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A.【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键.5、D【分析】根据概率公式求解即可.【详解】∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,∴.故选:D.【点睛】本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.6、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:.故选:B.【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.7、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.8、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】根据抛物线与x轴有交点,计算出,根据分式方程有解,计算出,再在中找出满足的数,利用概率公式求解.【详解】解:与x轴有交点,则,解得:,有解,则,即,在中,满足且有:,共5个,有概率公式知概率为:,故选:B.【点睛】本题考查了二次函数与坐标轴交点的问题、分式方程、概率,解题的关键是求出的取值范围后,确定满足条件的个数.10、A【分析】由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.【详解】∵摸到红球的频率稳定在20%,∴摸到红球的概率为20%,而a个小球中红球只有3个,∴摸到红球的频率为.解得.故选A.【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.二、填空题1、##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:.【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.2、【分析】袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.【详解】解:袋中有五个小球,3个红球,2个白球,形状材料均相同,从中任意摸一个球,摸出红球的概率为,故答案是:.【点睛】本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).3、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.【详解】解:∵袋子里有3个红球和5个白球,∴红球的数量小于白球的数量,∴从中任意摸出1只球,是红球的可能性小于白球的可能性.故答案为:小于.【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.4、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是.故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.5、0.880【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率, 从上表可以看出,频率成活的频率,即稳定于0.880左右,∴估计这种幼树移植成活率的概率约为0.88.故答案为:0.880.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.三、解答题1、(1)200;补图见解析;(2)81°;(3)【分析】(1)根据使用支付方式为银行卡的占比为15%,人数为30人即可求得总人数,根据微信支付所占的百分比为乘以总人数即可求得,根据总人数减去微信支付,银行卡,现金,其他方式支付的人数即可求得支付宝支付的人数;(2)先求得支付宝支付的人数所占比乘以360°即可求得扇形圆心角的度数;(3)根据列表法求概率即可.【详解】解:(1)(人)故答案为:200其中使用微信支付的有:(人)使用支付宝支付的有:(人)(2)故答案为:81°(3)将微信记为A,支付宝记为B,银行卡记为C,列表格如下: ABCABC共有9种等可能性的结果,其中两人恰好选择同一种支付方式的结果有3种,则P(两人恰好选择同一种支付方式)【点睛】本题考查了扇形统计图与条形统计图信息关联,求条形统计图某项数据,求扇形统计图圆心角,列表法求概率,掌握以上知识是解题的关键.2、(1);(2).【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.【详解】解:(1)由题意,∵推出A,B,C,D四种礼盒套餐,∴甲从中随机选取A套餐的概率是;故答案为:.(2)根据题意,画树状图为:共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,∴甲、乙2人选取相同套餐的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.3、(1);(2)设计见详解:.【分析】(1)根据题意列举出所有等情况数,进而利用第二次取出的数字小于第一次取出的数字的情况数除以总情况数即可;(2)由题意设计在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率,进而通过概率=所求情况数与总情况数之比进行求解.【详解】解:(1)画树状图如下:∵共有36种等可能的情况,其中第二次取出的数字小于第一次取出的数字有15种,∴第二次取出的数字小于第一次取出的数字的概率是;(2)设计:在6张卡片上分别写有1~6的整数,随机抽取1张放回,再随机抽取1张,求两次抽中的卡片上的数都是偶数的概率?∵共有36种等可能的情况,其中两次抽中的卡片上的数都是偶数的有9种,∴两次抽中的卡片上的数都是偶数的概率是.【点睛】本题主要考查概率的求法及树状图法;用到的知识点为:概率=所求情况数与总情况数之比.4、(1)③(2)【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率.(1)解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;故答案为③;(2)解:列表如下: ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.∴.【点睛】本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.5、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数×成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案.(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,∴成活率,故答案为:6335;0.905;(2)解:∵大量重复试验下,频率的稳定值即为概率值,∴可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵.此结论不正确,理由如下:∵概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,∴若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试同步训练题,共18页。试卷主要包含了下列说法正确的是.,下列说法中正确的是,下列说法错误的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了若a是从“,在一个不透明的布袋中,红色,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试精练,共20页。试卷主要包含了下列事件中,属于必然事件的是,下列事件是随机事件的是,下列事件中是不可能事件的是等内容,欢迎下载使用。