![2022年必考点解析沪科版九年级数学下册第26章概率初步综合训练试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12688581/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步综合训练试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12688581/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪科版九年级数学下册第26章概率初步综合训练试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12688581/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第26章 概率初步综合与测试同步达标检测题
展开
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了下列说法正确的是.,下列判断正确的是,书架上有本小说,下列事件为随机事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件2、下列事件中是不可能事件的是( )A.铁杵成针 B.水滴石穿 C.水中捞月 D.百步穿杨3、下列事件是随机事件的是( )A.抛出的篮球会下落B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是D.400人中有两人的生日在同一天4、下列说法正确的是( ).A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次5、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )A. B. C. D.6、下列判断正确的是( )A.明天太阳从东方升起是随机事件;B.购买一张彩票中奖是必然事件;C.掷一枚骰子,向上一面的点数是6是不可能事件;D.任意画一个三角形,其内角和是360°是不可能事件;7、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )A. B. C. D.8、下列事件为随机事件的是( )A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于79、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有( )A.16个 B.8个 C.4个 D.2个10、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.2、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.3、第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,小健通过统计数据了解到:从2002年到2018年的五届冬奥会上,中国队每届比赛均有金牌入账,共斩获了13枚金牌,于是,小健对同学们说:“2022年北京冬奥会中国队获得2枚以上金牌的可能性大小是100%”.你认为小健的说法______(填“合理”或“不合理”)理由是______.4、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.5、袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.三、解答题(5小题,每小题10分,共计50分)1、已知关于x的一元二次方程x2+bx+c=0.(1)c=2b﹣1时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c=0有两个相等的实数根的概率.2、我市举行了某学科实验操作考试,有A,B,C,D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.(1)小厉参加实验D考试的概率是______;(2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.3、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.4、甲、乙两个家庭有各自的生育规划,假定生男生女的概率一样.(1)甲家庭已有一个男孩,准备再生一个孩子,则第2个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生2个孩子,用列表或画树状图的方法求至少有一个孩子是女孩的概率.5、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解.并将结果绘制成两幅不完整的统计图.请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有 人;(2)求扇形统计图中“D”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”等级的学生约有多少人?(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率. -参考答案-一、单选题1、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.2、C【分析】根据随机事件,必然事件和不可能事件的定义,逐项即可判断.【详解】A、铁杵成针,一定能达到,是必然事件,故选项不符合;B、水滴石穿, 一定能达到,是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,故选项符合;D、百步穿杨,不一定能达到,是随机事件,故选项不符合;故选:C【点睛】本题考查了随机事件,必然事件,不可能事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【详解】A.抛出的篮球会下落是必然事件,故此选项不符合题意;B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意; C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;故选B【点睛】此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.4、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【详解】解:∵抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,∴正面都朝上的概率是: .故选A.【点睛】本题考查了列举法求概率的知识.此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比.6、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.7、D【分析】概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.【详解】解:书架上有本小说、本散文,共有本书,从中随机抽取本恰好是小说的概率是;故选:D.【点睛】本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.8、B【分析】根据事件发生的可能性大小判断.【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.【详解】解:∵摸球800次红球出现了160次,∴摸到红球的概率约为,∴20个球中有白球20×=4个,故选:C.【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.10、C【分析】用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.【详解】解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,位于“---”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“---”上方的概率是,故选:C.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题1、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下所示:由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,∴P两次抽出的卡片上所标数字之和为正数,故答案为:.【点睛】本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.2、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.3、不合理 获得金牌是随机事件 【分析】随机事件是指可能发生也可能不发生的事件,根据随机事件的定义进行解答即可.【详解】解:小健的说法不合理,因为获得金牌是随机事件,故答案为:不合理,获得金牌是随机事件.【点睛】本题考查了随机事件的应用,能理解随机事件的定义是解此题的关键.4、【分析】根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.【详解】解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,∴从中随机抽取一张,卡片上的数字是偶数的概率为,故答案为:.【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.【详解】从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1绿1,红1绿2,红2绿1.故所求的概率为P=;故答案为:.【点睛】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.三、解答题1、(1)证明见解析;(2).【分析】(1)把c=2b﹣1代入x2+bx+c=0.利用一元二次方程根的判别式即可得答案;(2)根据方程x2+bx+c=0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案.【详解】(1)∵c=2b﹣1,∴x2+bx+c=x2+bx+2b=0.∵==≥0,∴方程一定有两个实数根.(2)∵方程x2+bx+c=0有两个相等的实数根,∴=0,∴,画树状图如下:由树状图可知:所有可能情况数为12种,符合的情况数为2种,∴b、c的值使方程x2+bx+c=0有两个相等的实数根的概率为=.【点睛】本题考下一元二次方程的根的判别式及树状图法或列表法求概率,对于一元二次方程(),根的判别式为△=,当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键.2、(1)(2)【分析】(1)根据概率公式即可得;(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.(1)解:小厉参加实验考试的概率是,故答案为:;(2)解:列表如下: 所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,,,,4种情况,所以小王、小张抽到同一个实验的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.3、(1);(2)两次都是红球的概率为【分析】(1)根据列举法将所有可能列出,然后找出符合条件的可能,计算即可得;(2)四个球简写为“红1,红2,黄,蓝”,利用列表法列出所有出现的可能,从中找到符合条件的结果数,再根据概率公式计算可.(1)解:搅匀后从中任意摸出1个球,有四种可能:红球、红球、黄球、蓝球,其中是红球的可能有两种,∴,其中是黄球的可能有一种,∴,故答案为:;;(2)四个球简写为“红1,红2,黄,蓝”,列表法为: 红1红2黄蓝红1(红1,红1)(红1,红2)(红1,黄)(红1,蓝)红2(红2,红1)(红2,红2)(红2,黄)(红2,蓝)黄(黄,红1)(黄,红2)(黄,黄)(黄,蓝)蓝(蓝,红1)(蓝,红2)(蓝,黄)(蓝,蓝)共有16种等可能的结果数,其中两次都是红球的有4种结果,所以两次都是红球的概率为:.【点睛】题目主要考查利用列表法或树状图法求概率,理解题意,熟练掌握列表法或树状图法是解题关键.4、(1);(2)【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【详解】解:(1)第二个孩子是女孩的概率=;故答案为:;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、(1)40;(2)72°,见解析;(3)225人;(4)【分析】(1)C组:了解很少这个小组有人,占比由可得答案;(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;(3)由乘以A组的占比即可得到答案;(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案.【详解】解:(1) C组:了解很少这个小组有人,占比 接受问卷调查的学生共有人,故答案为: ;(2)组占比: 扇形统计图中“D”等级的扇形的圆心角的度数为:,组人数为: 所以补全条形统计图如下:(3)全校约有学生1500人,估计“A”等级的学生约有:(人);(4)列表如下: 甲乙丙丁甲 (甲,乙)(甲,丙)(甲,丁)乙(乙,甲) (乙,丙)(乙,丁)丙(丙,甲)(丙,乙) (丙,丁)丁(丁,甲)(丁,乙)(丁,丙) 所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,所以刚好抽到甲和丁同学的概率是:.【点睛】本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键.
相关试卷
这是一份数学沪科版第26章 概率初步综合与测试课堂检测,共18页。试卷主要包含了以下事件为随机事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份数学第26章 概率初步综合与测试精练,共17页。试卷主要包含了下列事件,你认为是必然事件的是等内容,欢迎下载使用。
这是一份初中沪科版第26章 概率初步综合与测试同步测试题,共19页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。