![2022年精品解析沪科版九年级数学下册第26章概率初步专项练习试题(含解析)01](http://img-preview.51jiaoxi.com/2/3/12688679/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第26章概率初步专项练习试题(含解析)02](http://img-preview.51jiaoxi.com/2/3/12688679/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪科版九年级数学下册第26章概率初步专项练习试题(含解析)03](http://img-preview.51jiaoxi.com/2/3/12688679/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学沪科版第26章 概率初步综合与测试复习练习题
展开沪科版九年级数学下册第26章概率初步专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
2、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )
A.15 B.12 C.9 D.4
3、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
4、下列说法中正确的是( )
A.一组数据2、3、3、5、5、6,这组数据的众数是3
B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1
C.为了解长沙市区全年水质情况,适合采用全面调查
D.画出一个三角形,其内角和是180°为必然事件
5、下列事件,你认为是必然事件的是( )
A.打开电视机,正在播广告
B.今天星期二,明天星期三
C.今年的正月初一,天气一定是晴天
D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的
6、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率
C.抛一枚硬币,出现正面的概率
D.任意写一个整数,它能被2整除的概率
7、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )
A. B. C. D.
8、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
9、下列说法正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上
C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖
D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近
10、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是( )
A.数字之和是0的概率为0 B.数字之和是正数的概率为
C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.
2、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
3、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.
4、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是________.
5、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:
(1)甲、乙都选择(窗花剪纸)课程的概率;
(2)甲、乙选择同一门课程的概率.
2、邮票素有“国家名片”之称,方寸之间,包罗万象.为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:
某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品.
(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是___________;
(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率.
3、若关于x的一元二次方程ax2+bx+1=0,且a﹣b+3=0,该方程有一个根为1.
(1)求a的值及另一个根;
(2)若把该一元二次方程的二次项系数,一次项系数,常数项做成卡片,不放回地随意摸出两张卡片,求两张卡片的数字一样的概率.
4、口袋里有除颜色外其它都相同的6个红球和4个白球.
(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.
①如果事件A是必然事件,请直接写出m的值.
②如果事件A是随机事件,请直接写出m的值.
(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.
5、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种支付方式中选一种方式进行支付,“微信”“支付宝”“银行卡”这三种支付方式分别用“A”“B”“C”表示,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
-参考答案-
一、单选题
1、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
2、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
3、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
4、D
【分析】
根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.
【详解】
A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;
B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;
D. 画出一个三角形,其内角和是180°为必然事件,正确;
故选D.
【点睛】
此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.
5、B
【分析】
必然事件就是一定发生的事件,依据定义即可作出判断.
【详解】
解:A、是随机事件,故此选项不符合题意;
B、是必然事件,故此选项符合题意;
C、是随机事件,故此选项不符合题意;
D、是随机事件,故此选项不符合题意;.
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、B
【分析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;
B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;
C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;
D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.
故选:B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.
7、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【详解】
解:列表得:
| 锁1 | 锁2 |
钥匙1 | (锁1,钥匙1) | (锁2,钥匙1) |
钥匙2 | (锁1,钥匙2) | (锁2,钥匙2) |
钥匙3 | (锁1,钥匙3) | (锁2,钥匙3) |
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
8、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
估计摸出黑球的概率为0.667,
则摸出绿球的概率为,
袋子中球的总个数为,
由此估出黑球个数为,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
9、D
【分析】
根据概率的意义去判断即可.
【详解】
∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,
∴A说法错误;
∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,
∴B说法错误;
∵“彩票中奖的概率是1%”表示中奖的可能性是1%,
∴C说法错误;
∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,
∴D说法正确;
故选D.
【点睛】
本题考查了概率的意义,正确理解概率的意义是解题的关键.
10、A
【分析】
列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.
【详解】
解:列树状图如下:
共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,
A. 数字之和是0的概率为0,故该项符合题意;
B. 数字之和是正数的概率为,故该项不符合题意;
C. 卡片上面的数字之和是负数的概率为,故该项不符合题意;
D. 数字之和分别是负数、0、正数的概率不相同,故该项不符合题意;
故选:A.
【点睛】
此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.
二、填空题
1、30
【分析】
设袋中红球有x个,根据题意用红球数除以白球和红球的总数等于红球的频率列出方程即可求出红球数.
【详解】
解:设袋中红球有x个,根据题意,得:
,
解并检验得:x=30.
所以袋中红球有30个.
故答案为:30.
【点睛】
本题考查了利用频率估计概率,解决本题的关键是用频率的集中趋势来估计概率,这个固定的近似值
2、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
3、
【分析】
直接利用概率公式求解即可求得答案.
【详解】
解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,
∴随机从袋中摸出1个球,则摸出黑球的概率是:.
故答案为:.
【点睛】
本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
根据概率公式计算即可
【详解】
共有个球,其中黑色球3个
从中任意摸出一球,摸出白色球的概率是.
故答案为:
【点睛】
本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.
5、
【分析】
抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.
【详解】
解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,
∴从中任意抽取一张,抽出的牌点数小于5的概率是: .
故答案为:.
【点睛】
此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题
1、(1) ;(2)
【分析】
(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;
(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.
【详解】
解:(1)由题意列表,
| A | B | C | D |
A | A,A | A,B | A,C | A,D |
B | B,A | B,B | B,C | B,D |
C | C,A | C,B | C,C | C,D |
D | D,A | D,B | D,C | D,D |
由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,
所以甲、乙都选择(窗花剪纸)课程的概率为.
(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,
所以甲、乙选择同一门课程的概率为.
【点睛】
本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.
2、(1);(2)见解析,
【分析】
(1)利用简单概率公式计算即可;
(2)利用画树状图或列表法,计算.
【详解】
(1)∵事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,
∴恰好抽到“冬季两项”的概率是,
故答案为:;
(2)解:直接使用图中的序号代表四枚邮票.
方法一:由题意画出树状图
由树状图可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.
∴.
方法二:由题意列表
第二枚 第一枚 | ① | ② | ③ | ④ |
① |
| ①② | ①③ | ①④ |
② | ②① |
| ②③ | ②④ |
③ | ③① | ③② |
| ③④ |
④ | ④① | ④② | ④③ |
|
由表可知,所有可能出现的结果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.
∴ .
【点睛】
本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键.
3、(1),另一个根为;(2)两张卡片的图案一样的概率是.
【分析】
(1)原方程化成ax2+(a+3)x+1=0,把x=1代入计算即可求得a的值,再利用根与系数的关系可求得另一个根;
(2)得到二次项系数为2,一次项系数-1,常数项-1,利用枚举法即可求解.
【详解】
解:(1)∵a﹣b+3=0,即b=a+3,
∴原方程为ax2+(a+3)x+1=0,
∵该方程有一个根为1,
∴a+(a+3) +1=0,
解得:,
∴方程为-2x2+x+1=0,即2x2-x-1=0,
设方程的另一个根为x1,
∴x1=;
答:,另一个根为;
(2)∵方程为2x2-x-1=0,
∴二次项系数为2,一次项系数-1,常数项-1,
把2,-1,-1做成卡片,不放回地随意摸出两张卡片,有(2,-1),(2,-1),(-1,-1)三种可能出现的结果,图案相同的情况有1种,
故两张卡片的图案一样的概率是.
【点睛】
本题考查了一元二次方程的解、根与系数的关系,利用枚举法求概率,求概率的时候,应注意题中所说的随机抽取两张意思是抽取一张不放回再抽取一张,与抽取一张放回再抽一张不一样.
4、(1)①4;②1或2或3;(2)
【分析】
(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;
(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.
【详解】
解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,
∴ ;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,
∴此时有白球 1个或2个或3个,
即m的值为1或2或3;
(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:
,
∴.
【点睛】
本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.
5、
【分析】
根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下:
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为.
【点睛】
本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
初中数学沪科版九年级下册第26章 概率初步综合与测试习题: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试习题,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试复习练习题: 这是一份沪科版九年级下册第26章 概率初步综合与测试复习练习题,共19页。试卷主要包含了下列事件中,属于不可能事件的是,下列说法正确的是等内容,欢迎下载使用。
初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试随堂练习题,共17页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。