搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪科版九年级数学下册第26章概率初步同步练习试题(无超纲)

    精品试题沪科版九年级数学下册第26章概率初步同步练习试题(无超纲)第1页
    精品试题沪科版九年级数学下册第26章概率初步同步练习试题(无超纲)第2页
    精品试题沪科版九年级数学下册第26章概率初步同步练习试题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第26章 概率初步综合与测试课后测评

    展开

    这是一份沪科版九年级下册第26章 概率初步综合与测试课后测评,共20页。试卷主要包含了下列事件,你认为是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
    沪科版九年级数学下册第26章概率初步同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中,属于不可能事件的是(    A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯2、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为(    A. B. C. D.3、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是(    A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于74、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是(   A.② B.①③ C.②③ D.①②③5、下列关于随机事件的概率描述正确的是(    A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率6、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是(    ).A. B. C. D.7、下列事件,你认为是必然事件的是(    A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的8、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是(  )A. B. C. D.9、下列事件是必然事件的是(   )A.明天一定是晴天 B.购买一张彩票中奖C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同10、布袋内装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是(  )A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、从1、-1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是_________.2、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.3、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为______.4、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为_______.5、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.三、解答题(5小题,每小题10分,共计50分)1、某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的;小明已答对前7题,答对最后3题就能顺利通关,其中第8题有AB两个选项,第9题和第10题都有ABC三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”)(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大2、圣诞节快到了,已知东方商城推出ABCD四种礼盒套餐,甲乙两人任选其中一种购买.(1)甲从中随机选取A套餐的概率是      (2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.3、2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从ABCD四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是______ 事件(填“随机”或“不可能”或“必然”);(2)用画树状图或列表的方法求出AB两名志愿者同时被选中的概率.4、在3×3的方格纸中,点ABCDEF分别位于如图所示的小正方形的顶点上.(1)如果只能沿着图中实线向右或向下走,则从点A走到点E          条不同的路线.(2)先从ABC中任意取一点,再从DEF中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率.5、学校为了促进垃圾的分类处理,将日常生活中的垃圾分为可回收、厨余和其它三类,分别设置了相应的垃圾箱,“可回收物”箱、“厨余垃圾”箱和“其他垃圾”箱.(1)若圆圆把一袋厨余垃圾随机投放,恰好能放对的概率是多少?(2)方方把垃圾分装在三个袋中,可他在投放时有些粗心,每袋垃圾都放错了位置(每个箱中只投放一袋),请你用画树状图的方法求方方把每袋垃圾都放错的概率. -参考答案-一、单选题1、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意; C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.2、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.3、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.5、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下: (跳,跳)(跳,坐)(跳,握)(坐,跳)(坐,坐)(坐,握)(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.7、B【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故此选项不符合题意;B、是必然事件,故此选项符合题意;C、是随机事件,故此选项不符合题意;D、是随机事件,故此选项不符合题意;.故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】用黑色的小球个数除以球的总个数即可解题.【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.9、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.10、B【分析】先画出树状图,再根据概率公式即可完成.【详解】所画树状图如下: 事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:故选:B【点睛】本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.二、填空题1、【分析】根据题意列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:列表得: -110-1---(1,-1)(0,-1)1(-1,1)---(0,1)0(-1,0)(1,0)---所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率.故答案为:【点睛】本题考查列表法与树状图法和点的坐标特征,注意掌握通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式求出事件AB的概率.2、【分析】直接根据几何概率求解即可.【详解】解:图中共有9个小正方形,其中阴影部分共有5个小正方形,∴从图中随机取一点,这点在阴影部分的概率是故答案为:【点睛】本题考查几何概率求解,理解并掌握几何概率是解题关键.3、12【分析】设白色棋子有x个,根据概率公式列方程求解即可.【详解】解:设白色棋子有x个,根据题意得:解得:x=12,经检验x=12是原方程的根,故答案为:12.【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率PA)=事件A可能出现的结果数除以所有可能出现的结果数.4、0.880【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率, 从上表可以看出,频率成活的频率,即稳定于0.880左右,∴估计这种幼树移植成活率的概率约为0.88.故答案为:0.880.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.5、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下所示:由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,P两次抽出的卡片上所标数字之和为正数故答案为:【点睛】本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.三、解答题1、(1)小明顺利通关的概率=;(2)从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【分析】(1)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案; (2)分别计算出在第8题和第9题时都使用了“求助”,小明顺利通关的概率;第8题和第10题时都使用了“求助”小明顺利通关的概率,第9题和第10题时都使用了“求助”小明顺利通关的概率即可求得答案.【详解】(1)若小明在竞答第8题和第9题时都使用了“求助”,则都去掉了一个错误选项(假设第8题去掉错误选项B,第9题去掉错误选项C),第8题只剩一个正确答案A,第9题还剩两个选项,一个正确答案,一个错误选项,共有6种等可能的结果数,其中三题全答对的结果数为1所以小明顺利通关的概率=故通关的概率为(2)若小明在竞答第8题和第9题时都使用了“求助”(假设第8题去掉错误选项B,第9题去掉错误选项C), 或在竞答第8题和第10题时都使用了“求助”(假设第8题去掉错误选项B,第10题去掉错误选项C),则如图所示:共有6种等可能的结果数,其中三题全答对的结果数为1,所以小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,顺利通关的概率=若小明在竞答第9题和第10题时都使用了“求助”(假设第9题去掉错误选项C,第10题去掉错误选项C共有8种等可能的结果数,其中三题全答对的结果数为1所以小明在竞答第9题和第10题时都使用了“求助”, 顺利通关的概率=故从概率的角度分析,小明在竞答第8题和第9题时都使用了“求助”或在竞答第8题和第10题时都使用了“求助”,竞答通关的可能性更大.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率.2、(1);(2)【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.【详解】解:(1)由题意,∵推出ABCD四种礼盒套餐,∴甲从中随机选取A套餐的概率是故答案为:(2)根据题意,画树状图为:共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,∴甲、乙2人选取相同套餐的概率为:【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件AB的结果数目m,然后根据概率公式计算事件A或事件B的概率.3、 (1)随机;(2)见解析【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.【详解】(1)根据随机事件的概念,A志愿者被选中是随机事件上,故答案为:随机.(2)                        由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同.其中AB两名志愿者同时被选中的有2种.PAB两名志愿者同时被选中)= 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、(1)6;(2)【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点出发,只能向右或向下,先向右的路线为:,先向下的路线为:共6条路线故答案为:6(2)列表如下, ABCDEADEBDECDEDFADFBDFCDFEFAEFBEFCEF根据列表可知共有9种等可能情况,只有CDECDFCEF是直角三角形则所画三角形是直角三角形的概率为【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键.5、(1),(2)【分析】(1)直接利用概率公式求解即可;(2)画树状图展示所有6种等可能的结果数,找出小亮投放正确的结果数,然后根据概率公式求解;【详解】解:(1)圆圆把一袋厨余垃圾随机投放,共有三种等可能结果,恰好能放对只有一种,恰好能放对的概率是(2)将生活垃圾分为厨余、可回收和其他三类,分别记为abc,相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为ABC,画树状图为:共有6种等可能的结果数,其中方方把每袋垃圾都放错的有2种:所以方方把每袋垃圾都放错的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件AB的结果数目m,然后利用概率公式计算事件A或事件B的概率. 

    相关试卷

    数学九年级下册第26章 概率初步综合与测试课后作业题:

    这是一份数学九年级下册第26章 概率初步综合与测试课后作业题,共21页。试卷主要包含了下列判断正确的是,下列说法正确的是,下列事件是随机事件的是,下列说法不正确的是等内容,欢迎下载使用。

    沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题:

    这是一份沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共20页。试卷主要包含了任意掷一枚骰子,下列事件中等内容,欢迎下载使用。

    数学九年级下册第26章 概率初步综合与测试当堂检测题:

    这是一份数学九年级下册第26章 概率初步综合与测试当堂检测题,共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map