沪科版九年级下册第26章 概率初步综合与测试课后复习题
展开
这是一份沪科版九年级下册第26章 概率初步综合与测试课后复习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).A. B. C. D.12、若随意向如图所示的正方形内抛一粒石子,则石子落在阴影部分的概率是( )A.1 B.1 C. D.13、下列关于随机事件的概率描述正确的是( )A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率4、下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪5、下列事件中是必然事件的是( )A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )A. B. C. D.7、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽签的方式确定出场顺序.现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8.下列事件中是必然事件的是( )A.一班抽到的序号小于6 B.一班抽到的序号为9C.一班抽到的序号大于0 D.一班抽到的序号为78、 “翻开数学书,恰好翻到第16页”,这个事件是( )A.随机事件 B.必然事件 C.不可能事件 D.确定事件9、下列事件是必然事件的是( )A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯10、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).2、有三辆车按1,2,3编号,苗苗和珊珊两人可任意选坐一辆车,则两人同坐一辆车的概率为___.3、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.4、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是______.5、林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为_______.三、解答题(5小题,每小题10分,共计50分)1、一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想.2、某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是 .(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.3、口袋里有除颜色外其它都相同的6个红球和4个白球.(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.①如果事件A是必然事件,请直接写出m的值.②如果事件A是随机事件,请直接写出m的值.(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.4、有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数,2;乙口袋中装有三个相同的球,它们分别写有数,,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为;再从乙口袋中随机取出一个球,其上的数记为.若,小明胜;若,为平局;若,小刚胜.(1)若,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数的值.5、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率. -参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=.故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、A【分析】设正方形ABCD的边长为a,然后根据石子落在阴影部分的概率即为阴影部分面积与正方形面积的比,由此进行求解即可.【详解】解:如图所示,设正方形ABCD的边长为a,∵四边形ABCD是正方形,∴∠C=90°,∴ ,∴,∴石子落在阴影部分的概率是,故选A.【点睛】本题主要考查了几何概率,正方形的性质,扇形面积公式,解题的关键在于能够根据题意得到石子落在阴影部分的概率即为阴影部分面积与正方形面积的比.3、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键. 5、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.7、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答案.【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C.【点睛】本题考察了必然事件.解题的关键在于区分必然、随机与不可能事件的含义.8、A【分析】随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.【详解】解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;故选A【点睛】本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.9、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.10、B【分析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,∴摸取两张小图片恰好合成一张完整图片的概率为:,故选:B.【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.二、填空题1、##【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解【详解】解:根据题意得:飞镖落在阴影区域内的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.2、【分析】画出树状图计算即可;【详解】根据题意画树状图得:,,,共有9种等可能的结果,期中两人同坐一辆车的结果数为3,∴两人同坐一辆车的概率为;故答案是:.【点睛】本题主要考查了画树状图求概率,准确计算是解题的关键.3、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是.解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.4、【分析】根据列表法求概率即可.【详解】解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下, ABCAAAABACBBABBBCCCACBCC共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则小东和小华都抽到游泳项目的概率为故答案为:【点睛】本题考查了列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.5、0.880【分析】大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率,据此可解.【详解】解:大量重复实验的情况下,当频率呈现一定的稳定性时,可以用这一稳定值估计事件发生的概率, 从上表可以看出,频率成活的频率,即稳定于0.880左右,∴估计这种幼树移植成活率的概率约为0.88.故答案为:0.880.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.三、解答题1、,验证过程见解析【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.【详解】活动1: 红球1红球2白球红球1 (红1,红2)(红1,白)红球2(红2,红1) (红2,白)白球(白,红1)(白,红2) ∵共有6种等可能的结果,摸到两个红球的有2种情况,∴摸出的两个球都是红球的概率记为活动2: 红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,白)白球(白,红1)(白,红2)(白,白)∵共有9种等可能的结果,摸到两个红球的有4种情况,∴摸出的两个球都是红球的概率记为∴【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.2、(1);(2)【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:(1)小华诵读《弟子规》的概率=;故答案为:;(2)列表得: 小华小敏ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,∴P(小华和小敏诵读两个不同材料)=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3、(1)①4;②1或2或3;(2)【分析】(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.【详解】解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,∴ ;② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球, ∴此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:,∴.【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.4、(1)见详解;(2)m=-1【分析】(1)先画出树状图,再利用概率公式计算,即可求解;(2)取一个符合条件的m的值,即可.【详解】解:(1)画树状图如下:∵一共有6种可能的结果,,有2种可能,,有3种可能,∴小明获胜的概率=2÷6=,小刚获胜的概率=3÷6=;(2)当m=-1时,画树状图如下:此时,小明和小刚获胜的概率相同.【点睛】本题主要考查等可能时间的概率,掌握画树状图是解题的关键.5、(1);(2)【分析】(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可.【详解】解:(1)列树状图如下所示:由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,∴(两次摸出的球的标号相同);(2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,∴(两次摸出的球的标号的和等于4).【点睛】本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试课堂检测,共19页。试卷主要包含了下列事件是随机事件的是,下列四幅图的质地大小,若a是从“等内容,欢迎下载使用。
这是一份2021学年第26章 概率初步综合与测试测试题,共18页。试卷主要包含了一个不透明的口袋里有红,有两个事件,事件,以下事件为随机事件的是,下列事件中是必然事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后作业题,共20页。试卷主要包含了下列说法中,正确的是,下列事件中是必然事件的是,下列事件中,属于不可能事件的是等内容,欢迎下载使用。