数学沪科版第26章 概率初步综合与测试课堂检测
展开
这是一份数学沪科版第26章 概率初步综合与测试课堂检测,共18页。试卷主要包含了以下事件为随机事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )A. B. C. D.2、有四张背面完全相同的卡片,正面分别标有数字1、2、3、4,从中同时抽取两张,则下列事件为随机事件的是( )A.两张卡片的数字之和等于1 B.两张卡片的数字之和大于1C.两张卡片的数字之和等于6 D.两张卡片的数字之和大于73、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:摸球次数104080200500800摸到红球次数3162040100160摸到红球的频率0.30.40.250.20.20.2则袋中的红球个数可能有( )A.16个 B.8个 C.4个 D.2个4、以下事件为随机事件的是( )A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是5、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是( )A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同6、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同.则在下列说法中正确的是( )A.无放回的从中连续摸出三个红球是随机事件B.从中摸出一个棕色球是随机事件C.无放回的从中连续摸出两个白球是不可能事件D.从中摸出一个红色球是必然事件7、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾.”你认为池塘主的做法( )A.有道理,池中大概有1200尾鱼 B.无道理C.有道理,池中大概有7200尾鱼 D.有道理,池中大概有1280尾鱼8、下列事件是必然事件的是( )A.同圆中,圆周角等于圆心角的一半B.投掷一枚均匀的硬币100次,正面朝上的次数为50次C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天D.把一粒种子种在花盆中,一定会发芽9、下列事件是必然事件的是( )A.明天一定是晴天 B.购买一张彩票中奖C.小明长大会成为科学家 D.13人中至少有2人的出生月份相同10、有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )A.(1)(2)都是随机事件 B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个盒子里装有除颜色外都相同的1个红球,4个黄球.把下列事件的序号填入下表的对应栏目中.①从盒子中随机摸出1个球,摸出的是黄球;②从盒子中随机摸出1个球,摸出的是白球;③从盒子中随机摸出2个球,至少有1个是黄球.事件必然事件不可能事件随机事件序号_______________ 2、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _______.3、在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是,则白色棋子个数为______.4、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.5、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.三、解答题(5小题,每小题10分,共计50分)1、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);②1个宣传类岗位:垃圾分类知识宣传(用表示).(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.2、2021年教育部出台了关于中小学生作业、睡眠、手机、读物、体质五个方面的管理,简称“五项管理”,这是推进立德树人,促进学生全面发展的重大举措.某班为培养学生的阅读习惯,利用课外时间开展以“走近名著”为主题的读书活动,有6名学生喜欢四大名著,其中2人(记为,)喜欢《西游记),2人(记为,)喜欢《红楼梦》,1人(记为C)喜欢《水浒传》,1人(记为D)喜欢《三国演义》.(1)如果从这6名学生中随机抽取1人担任读书活动宣传员,求抽到的学生恰好喜欢《西游记》的概率.(2)如果从这6名学生中随机抽取2人担任读书活动宣传员,求抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率.3、有四张大小、质地都相同的不透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率.4、甲、乙、丙、丁4人聚会,每人带了一件礼物,4件礼物外盒包装完全相同,将4件礼物放在一起.甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙两人抽到的都不是自己带来的礼物的概率.5、2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是______ 事件(填“随机”或“不可能”或“必然”);(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率. -参考答案-一、单选题1、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.2、C【分析】将两张卡片数字之和所有结果列出有3、4、5、6、7五种情况,再结合必然事件、不可能事件、随机事件的概念对选项依次判断即可.【详解】解:A、两张卡片的数字之和等于1是不可能事件,与题意不符,故错误;B、两张卡片的数字之和大于1是必然事件,与题意不符,故错误;C、两张卡片的数字之和等于6是随机事件,与题意符合,故正确;D、两张卡片的数字之和大于7是不可能事件,与题意不符,故错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.【详解】解:∵摸球800次红球出现了160次,∴摸到红球的概率约为,∴20个球中有白球20×=4个,故选:C.【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.4、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是是必然事件;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A. 数字之和是0的概率为0,故该项符合题意; B. 数字之和是正数的概率为,故该项不符合题意; C. 卡片上面的数字之和是负数的概率为,故该项不符合题意; D. 数字之和分别是负数、0、正数的概率不相同,故该项不符合题意; 故选:A.【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.6、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可.【详解】无放回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确.故选A.【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键.7、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解.【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;∴池塘主的做法有道理,池中大概有1200尾鱼;故选A.【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键.8、C【分析】直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.【详解】A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果.【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D.【点睛】本题考查了必然事件.解题的关键在于正确理解必然事件与随机事件的定义.10、D【分析】必然事件: 在一定条件下,一定会发生的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.【详解】解:事件(1):购买1张福利彩票,中奖,是随机事件,事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,故选D【点睛】本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.二、填空题1、③ ② ① 【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可能不发生的事件,来依次判断即可.【详解】解:根据盒子里装有除颜色外都相同的1个红球,4个黄球,①从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;②从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;③从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:③,②,①.【点睛】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌握相应的概念进行判断.2、【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.3、12【分析】设白色棋子有x个,根据概率公式列方程求解即可.【详解】解:设白色棋子有x个,根据题意得:,解得:x=12,经检验x=12是原方程的根,故答案为:12.【点睛】本题考查了分式方程的应用,以及概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4、【分析】袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.【详解】解:袋中有五个小球,3个红球,2个白球,形状材料均相同,从中任意摸一个球,摸出红球的概率为,故答案是:.【点睛】本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).5、【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.【详解】解:∵当且,一元二次方程有实数根∴且从,0,1,2这四个数中任取一个数,符合条件的结果有所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.三、解答题1、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为.(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.2、(1)抽到的学生恰好喜欢《西游记》的概率为;(2)抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.【分析】(1)根据题意及概率公式可直接进行求解;(2)根据题意列出表格,然后问题可求解.【详解】解:(1)由题意得:抽到的学生恰好喜欢《西游记》的概率为;(2)由题意可得列表如下: CD/√√√√√√/√√√√√√/√√√√√√/√√C√√√√/√D√√√√√/∴由表格可知共有30种等可能的情况,其中恰好1人喜欢《西游记》1人喜欢《红楼梦》的可能性有8种,∴抽到的学生恰好1人喜欢《西游记》1人喜欢《红楼梦》的概率为.【点睛】本题主要考查概率,熟练掌握利用列表法求解概率是解题的关键.3、【分析】根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、【分析】画出树状图,然后根据概率公式列式进行计算即可得解.【详解】解:设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,∴甲、乙两人抽到的都不是自己带来的礼物的概率为.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5、 (1)随机;(2)见解析【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可.【详解】(1)根据随机事件的概念,A志愿者被选中是随机事件上,故答案为:随机.(2) 由上述树状图可知:所有可能出现的结果共有12种,并且每一个结果出现的可能性相同.其中A,B两名志愿者同时被选中的有2种.∴P(A,B两名志愿者同时被选中)= 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试课堂检测,共40页。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步训练题,共21页。试卷主要包含了下列事件是随机事件的是,下列说法正确的是,下列说法错误的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共19页。试卷主要包含了下列事件是随机事件的是,下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。