![难点解析沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12692133/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12692133/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12692133/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试同步测试题
展开
这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图图案中,不是中心对称图形的是( )A. B. C. D.2、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )A. B. C. D.3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )A. B.C. D.4、下列四个图案中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.5、下列语句判断正确的是( )A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形6、下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π8、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A.50° B.70° C.110° D.120°9、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,,,则阴影部分的面积为( )A. B. C. D.10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )A.5厘米 B.4厘米 C.厘米 D.厘米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x2﹣5x+6=0的根,则直线l与圆O的的位置关系是______.2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:⊙O(纸片),其半径为.求作:一个正方形,使其面积等于⊙O的面积.作法:①如图1,取⊙O的直径,作射线,过点作的垂线;②如图2,以点为圆心,为半径画弧交直线于点;③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;④取的中点,以点为圆心,为半径画半圆,交射线于点;⑤以为边作正方形.正方形即为所求.根据上述作图步骤,完成下列填空:(1)由①可知,直线为⊙O的切线,其依据是________________________________.(2)由②③可知,,,则_____________,____________(用含的代数式表示).(3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.3、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°4、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)5、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)(推论证明)已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°. 求证:线段AB是⊙O的直径. 请你结合图①写出推论1的证明过程.(深入探究)如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为 .(拓展应用)如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE. 若AB=,则DE的长为 .2、如图,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求a的值;(2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;(3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.3、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.4、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.5、如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD的外角∠DAF的平分线.(1)求证:AM是⊙O的切线;(2)连接CO并延长交AM于点N,若⊙O的半径为2,∠ANC = 30°,求CD的长. -参考答案-一、单选题1、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.2、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.3、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.6、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、B【分析】根据旋转可得,,得.【详解】解:,,,将绕点逆时针旋转得到△,使点的对应点恰好落在边上,,,.故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.9、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB是的直径,OD是半径,,∴AE=CE,∴阴影CED的面积等于AED的面积,∴,∵,,∴,∴;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.10、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圆的半径是方程x2﹣5x+6=0的根,即圆的半径为2或3,∴当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定.2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可.(2)由=AC+,计算即可;根据计算即可.(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.【详解】解:(1)∵⊙O的直径,作射线,过点作的垂线,∴经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,==πr,∴=AC+=r+πr,∴=;∵,∴MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得==; 故答案为:.【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.3、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB【详解】解:连接,如图,PA,PB分别与⊙O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.4、##【分析】设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.【详解】解:设与AC相交于点D,过点D作,垂足为点E,∵,,,∴,∴为直角三角形,∴,∵绕点B顺时针方向旋转45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案为:.【点睛】题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.5、140【分析】作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I是的内心,∴BI,CI分别平分和,∴,,∵,∴,∴,∴,∵点O是的外心,∴,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.三、解答题1、【推论证明】见解析;【深入探究】;【拓展应用】.【分析】推论证明:根据圆周角定理求出,即可证明出线段AB是⊙O的直径;深入探究:连接AB,首先根据∠ACB=90°得出AB是⊙O的直径,然后求出,然后根据同弧所对的圆周角相等得到,然后根据30°角直角三角形的性质求出BD的长度,最后根据勾股定理即可求出AD的长度;拓展应用:连接AE,作CF⊥DE交DE于点F,首先根据等边三角形三线合一的性质求出,然后证明出A,E,C,D四点共圆,然后根据同弧或等弧所对的圆周角相等求出,,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵∴,∴A,B,O三点共线,又∵点O是圆心,∴AB是⊙O的直径;深入探究:如图所示,连接AB,∵∠ACB=90°∴AB是⊙O的直径∴∵∠ACD=60°∴∵∴∴在中,∴;拓展应用:如图所示,连接AE,作CF⊥DE交DE于点F,∵△ABC是等边三角形,点E是BC的中点∴,又∵以AC为底边在三角形ABC外作等腰直角三角形ACD∴,∴点A,E,C,D四点都在以AC为直径的圆上,∵∴∵CF⊥DE∴是等腰直角三角形∴,∴∵∴,解得:∴∵∴∴在中,∴∴.【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.2、(1)(2)(3)【分析】(1)先求得,点的坐标,进而根据即可求得的值;(2)过点作轴于点,证明是直角三角形,进而,根据相似的性质列出比例式进而代入点的坐标解方程即可;(3)接,取的中点,连接,根据题意,点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,根据点与圆的距离求最值,进而求得的解析式为,根据,设直线的解析式为,将点代入求得,进而设,根据,进而根据勾股定理列出方程解方程求解即可.(1)令,解得令,抛物线(a为常数,)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线与轴的交点为解得(2)如图,过点作轴于点,是直角三角形,且又在抛物线上,整理得解得(舍)在第三象限,(3)如图,连接,取的中点,连接,是的中位线根据题意点在以为圆心,2为半径的圆上,则在以为圆心,为半径的圆上运动,当三点共线,且在的延长线上时,最大,如图,即设直线的解析式为,代入点,即解得直线的解析式为设直线的解析式为解得则的解析式为设点,,解得(舍去)【点睛】本题考查了二次函数综合运用,点与圆的距离求最值问题,相似三角形的性质与判定,正确的添加辅助线并熟练掌握以上知识是解题的关键.3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;(2)过点A作AF⊥EC交EC于点F,由∠AOC=,OA=OC,可得∠OAC=,从而得到∠BAD=,再由AD∥EC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OC,∵CE是⊙O的切线,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:过点A作AF⊥EC交EC于点F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四边形OAFC是矩形,∵OA=OC,∴四边形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.4、见解析【分析】由题意易得AB⊥CD,,则有,由平行线的性质可得,然后可得,进而问题可求证.【详解】证明:∵AB为⊙O的直径,点E是弦CD的中点,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键.5、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,∠DAM=∠DAF,则有∠CAB=∠DAB,进而可得∠BAM=90°,然后问题可求证;(2)由题意易得CD//AM,∠ANC=∠OCE=30°,然后可得OE=1,CE=,进而问题可求解.(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E∴BC=BD∴∠CAB=∠DAB∵AM是∠DAF的平分线∴∠DAM=∠DAF∵∠CAD+∠DAF=180°∴∠DAB+∠DAM=90°即∠BAM=90°,AB⊥AM∴AM是⊙O的切线(2)解:∵AB⊥CD,AB⊥AM ∴CD//AM∴∠ANC=∠OCE=30°在Rt△OCE中,OC=2∴OE=1,CE=∵AB是⊙O的直径,弦CD⊥AB于点E∴CD=2CE=2.【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
这是一份2021学年第24章 圆综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法正确的个数有,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共31页。