初中数学第24章 圆综合与测试练习
展开沪科版九年级数学下册第24章圆定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P(-3,1)关于原点对称的点的坐标是( )
A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
2、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
3、下列图形中,是中心对称图形的是( )
A. B.
C. D.
4、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )
A.70° B.50° C.20° D.40°
5、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
6、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
7、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A. B. C. D.
8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
9、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
10、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.
2、圆锥的母线长为,底面圆半径为r,则全面积为______.
3、如图,将Rt△ABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,∠ABC=38°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 ___.
4、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
5、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.
(1)当时,时,求证:;
(2)当时,与有怎样的数量关系?请写出,并说明理由.
(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)
2、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.
(1)求证:是切线;
(2)若,,求的半径和的长.
3、如图,已知等边内接于⊙O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E.
(1)求证:CE是⊙O的切线;
(2)若AB的长为6,求CE的长.
4、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:PA+PB=PC.
5、在等边中,将线段AB绕点A顺时针旋转得到线段AD.
(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;
(2)在(1)的条件下连接BD,交CA的延长线于点F.
①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.
-参考答案-
一、单选题
1、C
【分析】
据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
【详解】
解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
故选:C.
【点睛】
本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
2、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
3、C
【分析】
根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.
【详解】
A、不是中心对称图形,不符合题意;
B、不是中心对称图形,不符合题意;
C、是中心对称图形,符合题意;
D、不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.
4、D
【分析】
首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
【详解】
解:连接OA,OB,
∵PA,PB为⊙O的切线,
∴∠OAP=∠OBP=90°,
∵∠ACB=70°,
∴∠AOB=2∠P=140°,
∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
故选:D.
【点睛】
此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
5、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
6、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
7、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
8、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
9、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
10、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
二、填空题
1、
【分析】
由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.
【详解】
解:与是等腰直角三角形,
,
,
在与中,
,
≌,
,
,
,
在以为直径的圆上,
的外心为,,
,
如图,当时,的值最小,
,
,
,,
.
则的最小值是,
故答案为:.
【点睛】
本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
2、
【分析】
根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
【详解】
解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
故可得,这个扇形的半径为,扇形的弧长为,
圆锥的侧面积为;
圆锥的全面积为圆锥的底面积侧面积:.
故答案为:.
【点睛】
本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
3、76°或142°
【分析】
设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,根据圆周角定理得∠BOD=2∠BCD,根据等腰三角形的性质分BC为底边和BC为腰求∠BCD的度数即可.
【详解】
解:设AB的中点为O,连接OD,则∠BOD为点D在量角器上对应的角,
∵Rt△ABC的斜边AB与量角器的直径恰好重合,
∴A、C、B、D四点共圆,圆心为点O,
∴∠BOD=2∠BCD,
①若BC为等腰三角形的底边时,如图射线CD1,则∠BCD1=∠ABC=38°,
连接OD1,则∠BOD1=2∠BCD1=76°;
②若BC为等腰三角形的腰时,
当∠ABC为顶角时,如图射线CD2,则∠BCD2=(180°-∠ABC)÷2=71°,
连接OD2,则∠BOD2=2∠BCD2=142°,
当∠ABC为底角时,∠BCD=180°-2∠ABC=104°,不符合题意,舍去,
综上,点D在量角器上对应的度数是76°或142°,
故答案为:76°或142°.
【点睛】
本题考查圆周角定理、等腰三角形的性质、三角形的内角和定理,熟练掌握圆周角定理,利用分类讨论思想解决问题是解答的关键.
4、5
【分析】
直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半,
即可知道点到点A,B,C的距离相等,
如下图:
,
,
故答案是:5.
【点睛】
本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
5、
【分析】
如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.
【详解】
解:如图连接并延长,过点作交于点,
由题意可知,,为等边三角形
在中
在中
故答案为:.
【点睛】
本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.
三、解答题
1、(1)见解析;(2)∠DAE=∠BAC,见解析;(3)DE=BD,见解析
【分析】
(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;
(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;
(3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得D′E=CD′,再根据旋转的性质解答即可.
【详解】
(1)证明:∵△ABD绕点A旋转得到△ACD′,
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE
=∠BAD+∠CAE
=∠BAC−∠DAE
=120°−60°
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)解:∠DAE= ∠BAC.
理由如下:在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=∠BAC;
(3)解:∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=CD′,
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=BD.
【点睛】
本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.
2、
(1)证明见解析
(2)
【分析】
(1)连接OA,根据已知条件证明OA⊥AE即可解决问题;
(2)取CD中点F,连接OF,根据垂径定理可得OF⊥CD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.
(1)
证明:如图,连接OA,
∵AE⊥CD,
∴∠DAE+∠ADE=90°.
∵DA平分∠BDE,
∴∠ADE=∠ADO,
又∵OA=OD,
∴∠OAD=∠ADO,
∴∠DAE+∠OAD=90°,
∴OA⊥AE,
∴AE是⊙O切线;
(2)
解:如图,取CD中点F,连接OF,
∴OF⊥CD于点F.
∴四边形AEFO是矩形,
∵CD=6,
∴DF=FC=3.
在Rt△OFD中,OF=AE=4,
∴,
在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,
∴,
∴AD的长是.
【点睛】
本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.
3、(1)见解析;(2)3
【分析】
(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
【详解】
解:(1)证明:如图连接OC、OB.
∵是等边三角形
∴
∵
∴
又 ∵
∴
∴
∴
∴与⊙O相切;
(2)∵四边形ABCD是⊙O的内接四边形,
∴
∴
∵D为的中点,
∴
∴
∵
∴
∴
【点睛】
本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
4、(1)△ABC是等边三角形,证明见解析;(2)见解析
【分析】
(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP.
【详解】
解:(1)△ABC是等边三角形.证明如下:
由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC
∵∠APC=∠CPB=60°,
∴∠BAC=∠ABC=60°,
∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.
∴△ABC是等边三角形.
(2)如图所示,在PC取一点E使得AE=AP,
∵∠APE=60°,AP=AE,
∴△APE是等边三角形,
∴AP=PE,∠AEP=60°,
∴∠AEC=120°,
又∵∠APC=∠CPB=60°,
∴∠APB=120°,
∴∠AEC=∠APB,
∵△ABC是等边三角形,
∴AB=AC,
又∵∠ABP=∠ACE,
∴△APB≌△AEC(AAS),
∴BP=CE,
∴PC=PE+CE=AP+BP.
【点睛】
本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.
5、(1);(2)①见解析;②AE=AF+CE,证明见解析.
【分析】
(1)根据“线段DA的延长线与线段BC相交于点E”可求解;
(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.
【详解】
(1)如图:AD只能在锐角∠EAF内旋转符合题意
故α的取值范围为:;
(2)补全图形如下:
(3)AE=AF+CE,
证明:在AE上截取AH=AF,由旋转可得:AB=AD,
∴∠D=∠ABF,
∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠ACB=60°,
∴AD=AC,
∵∠DAF=∠CAH,
∴△AFD≌△AHC,
∴∠AFD=∠AHC,∠D=∠ACH,
∴∠AFB=∠CHE,
∵∠AFB+∠ABF=∠ACH+∠HCE=60°,
∴∠CHE+∠D=∠D+∠HCE=60°,
∴∠CHE=∠HCE,
∴CE=HE,
∴AE=AH+HE=AF+CE.
【点睛】
本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.
初中数学沪科版九年级下册第24章 圆综合与测试同步练习题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共28页。
2021学年第24章 圆综合与测试同步测试题: 这是一份2021学年第24章 圆综合与测试同步测试题,共29页。
初中数学沪科版九年级下册第24章 圆综合与测试同步训练题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步训练题,共25页。