搜索
    上传资料 赚现金
    英语朗读宝

    难点详解沪科版九年级数学下册第24章圆专题测试练习题(含详解)

    难点详解沪科版九年级数学下册第24章圆专题测试练习题(含详解)第1页
    难点详解沪科版九年级数学下册第24章圆专题测试练习题(含详解)第2页
    难点详解沪科版九年级数学下册第24章圆专题测试练习题(含详解)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课时练习

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共34页。
    沪科版九年级数学下册第24章圆专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、点P(3,﹣2)关于原点O的对称点的坐标是(  )
    A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)
    2、下列四个图案中,是中心对称图形的是(  )
    A. B.
    C. D.
    3、如图,是△ABC的外接圆,已知,则的大小为( )

    A.55° B.60° C.65° D.75°
    4、如图,CD是的高,按以下步骤作图:
    (1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
    (2)作直线GH交AB于点E.
    (3)在直线GH上截取.
    (4)以点F为圆心,AF长为半径画圆交CD于点P.
    则下列说法错误的是( )

    A. B. C. D.
    5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
    A.3π B.6π C.12π D.18π
    6、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )

    A.4 B.6 C.8 D.10
    7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    8、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    9、下面的图形中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    10、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )

    A.3 B.4 C.5 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.

    2、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.

    3、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.
    4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则______.

    5、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.

    三、解答题(5小题,每小题10分,共计50分)
    1、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    2、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.

    (1)求证:是切线;
    (2)若,,求的半径和的长.
    3、下面是“过圆外一点作圆的切线”的尺规作图过程.
    已知:⊙O和⊙O外一点P.
    求作:过点P的⊙O的切线.作法:如图,

    (1)连接OP;
    (2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;
    (3)作直线MN,交OP于点C;
    (4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
    (5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线

    完成如下证明:
    证明:连接OA,OB,
    ∵OP是⊙C直径,点A在⊙C上
    ∴∠OAP=90°(___________)(填推理的依据).
    ∴OA⊥AP.
    又∵点A在⊙O上,
    ∴直线PA是⊙O的切线(___________)(填推理的依据).
    同理可证直线PB是⊙O的切线.
    4、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.

    (1)如图,当点E在线段CD上时,
    ①依题意补全图形,并直接写出BC与CF的位置关系;
    ②求证:点G为BF的中点.
    (2)直接写出AE,BE,AG之间的数量关系.
    5、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.

    (1)求∠ABD的度数;
    (2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;
    (3)在(2)的条件下,求的长.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
    故选:B.
    【点睛】
    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
    2、A
    【分析】
    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
    【详解】
    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
    故选:A.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
    3、C
    【分析】
    由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.
    【详解】
    解:∵OA=OB,,
    ∴∠BAO=.
    ∴∠AOB=130°.
    ∴=∠AOB=65°.
    故选:C.
    【点睛】
    此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.
    4、C
    【分析】
    连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
    【详解】
    解:连接AF、BF,由作法可知,FE垂直平分AB,
    ∴,故A正确;
    ∵CD是的高,
    ∴,故B正确;
    ∵,,
    ∴,故C错误;
    ∵,
    ∴∠AFE=45°,
    同理可得∠BFE=45°,
    ∴∠AFB=90°,
    ,故D正确;
    故选:C.

    【点睛】
    本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
    5、B
    【分析】
    利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
    【详解】
    解:它的侧面展开图的面积=×2×2×3=6(cm2).
    故选:B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    6、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    7、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    8、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    9、A
    【详解】
    解:A、既是轴对称图形又是中心对称图形,此项符合题意;
    B、是中心对称图形,不是轴对称图形,此项不符题意;
    C、是轴对称图形,不是中心对称图形,此项不符题意;
    D、是轴对称图形,不是中心对称图形,此项不符题意;
    故选:A.
    【点睛】
    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
    10、B
    【分析】
    由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
    【详解】
    ∵PA,PB是⊙O的切线,A,B为切点,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    故选:B
    【点睛】
    本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
    二、填空题
    1、##
    【分析】
    如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.
    【详解】
    解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
    ∵点C的坐标为(2,2),圆C与x轴相切于点A,
    ∴点A的坐标为(2,0),
    ∴OA=OD=2,即O是AD的中点,
    又∵M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴,
    ∴当BD最小时,OM也最小,
    ∴当B运动到时,BD有最小值,
    ∵C(2,2),D(-2,0),
    ∴,
    ∴,
    ∴,
    故答案为:.

    【点睛】
    本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.
    2、35°
    【分析】
    根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】
    解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
    ∴∠AOD=∠BOC=30°,AO=DO,
    ∵∠AOC=100°,
    ∴∠BOD=100°−30°×2=40°,
    ∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
    由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
    故答案为:35°.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    3、18.84
    【分析】
    先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.
    【详解】
    解:设圆弧所在圆的半径为厘米,
    则,
    解得,
    则它所在圆的周长为(厘米),
    故答案为:.
    【点睛】
    本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.
    4、
    【分析】
    根据旋转角相等可得,进而勾股定理求解即可
    【详解】
    解:四边形是正方形

    将绕点B顺时针方向旋转,能与重合,


    故答案为:
    【点睛】
    本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.
    5、
    【分析】
    根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.
    【详解】
    解:如图所示:当点P到如图位置时,的面积最大,

    ∵、,
    ∴圆的直径,半径为1,
    ∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:
    此时面积的最大值为:;
    如图所示:连接AP,

    ∵PD切于点D,
    ∴,
    ∴,
    设点,
    在中,,,
    ∴,
    在中,,
    ∴,
    则,
    当时,PD取得最小值,
    最小值为,
    故答案为:①;②.
    【点睛】
    题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.
    三、解答题
    1、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
    2、
    (1)证明见解析
    (2)
    【分析】
    (1)连接OA,根据已知条件证明OA⊥AE即可解决问题;
    (2)取CD中点F,连接OF,根据垂径定理可得OF⊥CD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.
    (1)
    证明:如图,连接OA,
    ∵AE⊥CD,
    ∴∠DAE+∠ADE=90°.
    ∵DA平分∠BDE,
    ∴∠ADE=∠ADO,
    又∵OA=OD,
    ∴∠OAD=∠ADO,
    ∴∠DAE+∠OAD=90°,
    ∴OA⊥AE,
    ∴AE是⊙O切线;
    (2)
    解:如图,取CD中点F,连接OF,
    ∴OF⊥CD于点F.
    ∴四边形AEFO是矩形,
    ∵CD=6,
    ∴DF=FC=3.
    在Rt△OFD中,OF=AE=4,
    ∴,
    在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,
    ∴,
    ∴AD的长是.
    【点睛】
    本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.
    3、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线
    【分析】
    连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;
    【详解】
    证明:连接OA,OB,
    ∵OP是⊙C直径,点A在⊙C上,
    ∴∠OAP=90°(直径所对的圆周角是直角),
    ∴OA⊥AP.
    又∵点A在⊙O上,
    ∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),
    同理可证直线PB是⊙O的切线,
    故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.

    4、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.
    【分析】
    (1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;
    ②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;
    (2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.
    【详解】
    解:(1)①如图所示,BC⊥CF.
    ∵将线段AE逆时针旋转90°得到线段AF,
    ∴AE=AF,∠EAF=90°,
    ∴∠EAC+∠CAF=90°,
    ∵,,
    ∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,

    ∴△BAE≌△CAF(SAS),
    ∴∠ABE=∠ACF=45°,
    ∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
    ∴BC⊥CF;

    ②∵AD⊥BC,BC⊥CF.
    ∴AD∥CF,
    ∴∠BDG=∠BCF=90°,∠BGD=∠BFC,
    ∴△BDG∽△BCF,
    ∴,
    ∵,AD⊥BC,
    ∴BD=DC=,
    ∴,
    ∴,
    ∴,
    ∴BG=GF;
    (2)2AE2=4AG2+BE2.延长BA交CF延长线于H,
    ∵AD⊥BC,AB=AC,
    ∴AD平分∠BAC,
    ∴∠BAD=∠CAD=,
    ∵BG=GF,AG∥HF,
    ∴∠BAG=∠H=45°,∠AGB=∠HFB,
    ∴△BAG∽△BHF,
    ∴,
    ∴HF=2AG,
    ∵∠ACE=45°,
    ∴∠ACE =∠H,
    ∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,
    ∴∠EAC=∠FAH,
    在△AEC和△AFH中,

    ∴△AEC≌△AFH(AAS),
    ∴EC=FH=2AG,
    在Rt△AEF中,根据勾股定理,
    在Rt△ECF中,即.

    【点睛】
    本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.
    5、(1);(2);(3)
    【分析】
    (1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;
    (2)先求解 再结合(1)的结论可得答案;
    (3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.
    【详解】
    解:(1)如图,过作 垂足分别为 连接





    四边形为矩形,
    由勾股定理可得: 而

    四边形为正方形,



    (2)如图,过作 垂足分别为

    由(1)得:四边形为正方形,

    OA=2,∠OAB=15°,



    (3)如图,连接










    【点睛】
    本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共27页。试卷主要包含了等边三角形,如图,是的直径,等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步练习题,共28页。

    沪科版九年级下册第24章 圆综合与测试精练:

    这是一份沪科版九年级下册第24章 圆综合与测试精练,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map