初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题
展开京改版七年级数学下册第八章因式分解专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
2、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
3、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
4、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
5、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )
A. B.
C. D.
6、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
7、下列因式分解正确的是( )
A. B.
C. D.
8、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
9、下列运算错误的是( )
A. B. C. D.(a≠0)
10、下列多项式不能用公式法因式分解的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:3x2y﹣12xy2=___.
2、把多项式因式分解的结果是_______.
3、如果,,那么代数式的值是________.
4、分解因式:________.(直接写出结果)
5、分解因式:=__________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1);
(2).
2、因式分解
(1); (2).
3、将下列各式分解因式:
(1); (2)
4、分解因式:a3﹣a2b﹣4a+4b.
5、因式分解:
(1)
(2).
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据因式分解的定义直接判断即可.
【详解】
解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B.等式从左到右的变形属于因式分解,故本选项符合题意;
C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;
D.属于整式乘法,不属于因式分解,故本选项不符合题意;
故答案为:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
2、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
3、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
4、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.
5、A
【解析】
【分析】
左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.
【详解】
解:由题意可得:a2−b2=(a−b)(a+b).
故选:A.
【点睛】
此题主要考查了乘法的平方差公式,属于基础题型.
6、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
7、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
8、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
9、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
10、C
【解析】
【分析】
A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.
【详解】
解:A.a2-8a+16=(a-4)2,故选项A不符合题意;
B. ,故选项B不符合题意;
C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;
D. ,故选项D不符合题意;
故选C
【点睛】
本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.
二、填空题
1、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3x2y﹣12xy2
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
2、
【解析】
【分析】
先提取公因式,在利用公式法计算即可;
【详解】
原式;
故答案是:.
【点睛】
本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.
3、-64
【解析】
【分析】
先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.
【详解】
解:=
=
∵,,
∴原式=2×(-4)×8
=-64,
故答案是:-64.
【点睛】
本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.
4、2(x-a)(4a-2b-3c)
【解析】
【分析】
提出公因式2(x-a)即可求得结果
【详解】
解:2(x-a)(4a-2b-3c)
故答案为:2(x-a)(4a-2b-3c)
【点睛】
本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.
5、##()(2- x)(2+x)
【解析】
【分析】
观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.
【详解】
解:
故答案为:
【点睛】
本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)提取m,后用完全平方公式分解;
(2)提取a-b,后用平方差公式分解.
【详解】
解:(1)原式
.
(2)原式
.
【点睛】
本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.
2、(1)2ab(2a-5b)2;(2)(a-b)(x+3)(x-3)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式分解因式即可;
(2)先提取公因式,然后利用平方差公式分解因式即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了因式分解,熟练掌握因式分解的方法是解题的关键.
3、(1);(2)
【解析】
【分析】
(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
4、(a﹣b)(a+2)(a﹣2)
【解析】
【分析】
先分组,再提公因式,最后用平方差公式进一步进行因式分解.
【详解】
解:a3﹣a2b﹣4a+4b
=(a3﹣4a)﹣(a2b﹣4b)
=a(a2﹣4)﹣b(a2﹣4)
=(a﹣b)(a2﹣4)
=(a﹣b)(a+2)(a﹣2).
【点睛】
本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)先提取公因式,再利用完全平方公式因式分解;
(2)先利用平方差公式因式分解,再利用完全平方公式因式分解.
【详解】
解:(1)原式=
=;
(2)原式=
=
【点睛】
本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解.注意:因式分解一定要彻底.
初中数学北京课改版七年级下册第八章 因式分解综合与测试课时训练: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了多项式分解因式的结果是,若,则E是,下列因式分解正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试测试题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,下列多项式,若x2+ax+9=,下列因式分解正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步练习题,共16页。试卷主要包含了下列因式分解错误的是,如图,长与宽分别为a等内容,欢迎下载使用。