初中数学北京课改版七年级下册第八章 因式分解综合与测试一课一练
展开京改版七年级数学下册第八章因式分解重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各组式子中,没有公因式的一组是( )
A.2xy与x B.(a﹣b)2与a﹣b
C.c﹣d与2(d﹣c) D.x﹣y与x+y
2、若可以用公式进行分解因式,则的值为( )
A.6 B.18 C. D.
3、多项式与的公因式是( )
A. B. C. D.
4、下列四个式子从左到右的变形是因式分解的为( )
A.(x﹣y)(﹣x﹣y)=y2﹣x2
B.a2+2ab+b2﹣1=(a+b)2﹣1
C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)
D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+12
5、因式分解:x3﹣4x2+4x=( )
A. B. C. D.
6、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
7、已知的值为5,那么代数式的值是( )
A.2030 B.2020 C.2010 D.2000
8、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
9、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
10、下列各式中,正确的因式分解是( )
A.
B.
C.
D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在实数范围内分解因式:x2﹣3xy﹣y2=___.
2、因式分解:_________.
3、因式分解: _______________________.
4、因式分解:__.
5、分解因式:_______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)3a²c-6abc+3b²c
(2)x²(m-2n)+y²(2n-m)
(3)
(4)(x﹣1)(x﹣3)+1
2、(1)计算:
①
②
(2)因式分解:
①
②
3、完成下列各题:
(1)计算:① ②
(2)因式分解:① ②
4、分解因式:
5、因式分解:
(1);
(2) (7x2+2y2)2﹣(2x2+7y2)2
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据公因式是各项中的公共因式逐项判断即可.
【详解】
解:A、2xy与x有公因式x,不符合题意;
B、(a﹣b)2与a﹣b有公因式a﹣b,不符合题意;
C、c﹣d与2(d﹣c)有公因式c﹣d,不符合题意;
D、x﹣y与x+y没有公因式,符合题意,
故选:D.
【点睛】
本题考查公因式,熟练掌握确定公因式的方法是解答的关键.
2、D
【解析】
【分析】
根据完全平方公式进行因式分解即可得.
【详解】
解:由题意得:,
即,
则,
故选:D.
【点睛】
本题考查了利用完全平方公式进行因式分解,熟练掌握完全平方公式是解题关键.
3、B
【解析】
【分析】
先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.
【详解】
解:,
,
则多项式与的公因式是,
故选:B.
【点睛】
本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.
4、C
【解析】
【分析】
根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
【详解】
解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;
C选项,符合因式分解的定义,符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.
5、A
【解析】
【分析】
根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.
【详解】
解:原式==
故选:A.
【点睛】
本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.
6、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
7、B
【解析】
【分析】
将化简为,再将代入即可得.
【详解】
解:∵,
把代入,原式=,
故选B.
【点睛】
本题考查了代数式求值,解题的关键是把掌握提公因式.
8、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
9、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
10、B
【解析】
【分析】
直接利用公式法以及提取公因式法分解因式,进而判断得出答案.
【详解】
解:.,故此选项不合题意;
.,故此选项符合题意;
.,故此选项不合题意;
.,故此选项不合题意;
故选:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
二、填空题
1、.
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
2、
【解析】
【分析】
原式提取公因式y2,再利用平方差公式分解即可.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
3、
【解析】
【分析】
根据提取公因式和平方差公式进行分解即可;
【详解】
原式;
故答案是:.
【点睛】
本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.
4、
【解析】
【分析】
先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.
5、x(x+2y)(x-2y)
【解析】
【分析】
先提取公因式,再用平方差公式进行分解即可.
【详解】
解:x3-4xy2
=x(x2-4y2)
=x(x+2y)(x-2y)
故答案为:x(x+2y)(x-2y)
【点睛】
本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.
三、解答题
1、(1);(2);(3);(4)
【解析】
【分析】
(1)原式提取公因式3c,再利用完全平方公式分解即可;
(2)原式提取公因式,再利用平方差公式分解即可;
(3)原式提取公因式2,再利用完全平方公式分解即可;
(4)先计算多项式乘多项式,再利用公式法因式分解即可.
【详解】
(1)
(2)
.
(3)==
(4)===.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
2、(1)①;②;(2)①(2m+3)(2m-3);②a(x+y)2
【解析】
【分析】
(1)①利用多项式除以单项式的计算法则求解即可;
②先利用平方差公式和多项式乘以多项式的计算法则去括号,然后合并同类项即可;
(2)①利用平方差公式分解因式即可;
②利用提取公因式和完全平方公式分解因式即可.
【详解】
解(1)①原式
;
②原式
;
(2)①原式=(2m)2-32
=(2m+3)(2m-3) ;
②原式=a(x2+2xy+y2)
=a(x+y)2.
【点睛】
本题主要考查了分解因式,多项式除以单项式,整式的混合运算,熟知相关计算法则是解题的关键.
3、(1)①;②;(2)①;②
【解析】
【分析】
(1)先算乘方,再算乘除,即可求解;
(2)直接个那句多项式除以单项式法则计算,即可求解;
(3)利用提出公因式法因式分解,即可求解;
(4)利用平方差公式,即可求解.
【详解】
解:①
;
②
;
(2)①
;
②
.
【点睛】
本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键.
4、
【解析】
【分析】
原式先变形为,再利用提公因式法分解.
【详解】
解:原式=
=
=
【点睛】
本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.
5、(1);(2)
【解析】
【分析】
(1)先提出公因式,再利用完全公式,即可求解;
(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
北京课改版七年级下册第八章 因式分解综合与测试复习练习题: 这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列多项式,下列多项式因式分解正确的是等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试课时练习: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。
初中北京课改版第八章 因式分解综合与测试巩固练习: 这是一份初中北京课改版第八章 因式分解综合与测试巩固练习,共15页。试卷主要包含了下列变形,属因式分解的是,多项式与的公因式是等内容,欢迎下载使用。