2020-2021学年第八章 因式分解综合与测试课时作业
展开京改版七年级数学下册第八章因式分解综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
2、已知x,y满足,则的值为( )
A.—5 B.4 C.5 D.25
3、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
4、下列各式中,能用平方差公式分解因式的是( )
A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab3
5、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
6、下列因式分解中,正确的是( )
A. B.
C. D.
7、下列由左到右的变形,属于因式分解的是( )
A. B.
C. D.
8、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )
A.﹣6 B.±6 C.12 D.±12
9、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
10、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )
A.an﹣1 B.2an C.2an﹣1 D.2an+1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把多项式分解因式的结果是______.
2、如果,,那么代数式的值是________.
3、把多项式分解因式的结果是______________.
4、分解因式:3x2y﹣12xy2=___.
5、若,,则的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:.
2、分解因式:.
3、因式分解:
(1)
(2).
4、分解因式:
(1)3a2﹣6a+3
(2)(x2+y2)2﹣4x2y2
5、已知xy=5,x2y﹣xy2﹣x+y=40.
(1)求x﹣y的值.
(2)求x2+y2的值.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
2、A
【解析】
【分析】
根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.
【详解】
解:.
故选:A.
【点睛】
本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.
3、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
4、B
【解析】
【分析】
能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.
【详解】
解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;
B、,能用平方差公式分解因式,故此选项正确;
C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;
D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.
故选B.
【点睛】
本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.
5、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
6、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、A
【解析】
【分析】
直接利用因式分解的定义分别分析得出答案.
【详解】
解:、,是因式分解,符合题意.
、,是整式的乘法运算,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
故选:A.
【点睛】
本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.
8、D
【解析】
【分析】
利用完全平方公式的结构特征判断即可求出a的值.
【详解】
解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,
∴ax=±12x.
故选:D.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
9、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
10、C
【解析】
【分析】
根据提取公因式的方法计算即可;
【详解】
原式,
∴2an﹣1﹣4an+1的公因式是,即;
故选C.
【点睛】
本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.
二、填空题
1、
【解析】
【分析】
先提取4m,再根据平方差公式即可因式分解.
【详解】
=
故答案为:.
【点睛】
此题主要考查因式分解,解题的关键是熟知平方差公式的特点.
2、-64
【解析】
【分析】
先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.
【详解】
解:=
=
∵,,
∴原式=2×(-4)×8
=-64,
故答案是:-64.
【点睛】
本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.
3、##
【解析】
【分析】
直接提取公因式3x,再利用平方差公式分解因式即可.
【详解】
解:
=
=.
故答案为:.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
4、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3x2y﹣12xy2
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
5、±1
【解析】
【分析】
先把提取公因式,根据,求出的值,再根据,求出的值,即可得出的值.
【详解】
解:,
,
,
,
,
;
故答案为:.
【点睛】
此题考查了因式分解的应用,解决此类问题要整体观察,根据具体情况综合应用相关公式进行整体代入是解决这类问题的基本思想.
三、解答题
1、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
2、x(x-3)(x+3)
【解析】
【分析】
先提取公因式x,然后利用平方差公式分解因式即可.
【详解】
解:x3-9x
=x(x2-9)
=x(x-3)(x+3).
【点睛】
本题主要考查了分解因式,熟知分解因式的方法是解题的关键.
3、(1);(2)
【解析】
【分析】
(1)先提取公因式,再利用完全平方公式因式分解;
(2)先利用平方差公式因式分解,再利用完全平方公式因式分解.
【详解】
解:(1)原式=
=;
(2)原式=
=
【点睛】
本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解.注意:因式分解一定要彻底.
4、(1);(2)
【解析】
【分析】
(1)先提公因式3,再由完全平方公式进行因式分解;
(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.
【详解】
(1),
,
;
(2),
,
,
,
.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、(1)x﹣y=10;(2)x2+y2=110.
【解析】
【分析】
(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.
(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.
【详解】
解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,
∴x2y﹣xy2﹣x+y
=xy(x﹣y)﹣(x﹣y)
=(xy﹣1)(x﹣y)
∵xy=5,
∴(5﹣1)(x﹣y)=40,
∴x﹣y=10.
(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.
【点睛】
本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.
数学七年级下册第八章 因式分解综合与测试课时训练: 这是一份数学七年级下册第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列多项式中有因式x﹣1的是,下列各式中,正确的因式分解是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试复习练习题: 这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列多项式,下列多项式因式分解正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业,共15页。试卷主要包含了计算的值是,多项式分解因式的结果是,下列运算错误的是,下列多项式因式分解正确的是等内容,欢迎下载使用。