数学七年级下册第八章 因式分解综合与测试精练
展开京改版七年级数学下册第八章因式分解综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
2、下列因式分解中,正确的是( )
A. B.
C. D.
3、下列各式从左到右的变形中,是因式分解的是( )
A. B.
C. D.
4、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
5、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
6、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
7、将分解因式,正确的是( )
A. B.
C. D.
8、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
9、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
10、下列分解因式结果正确的是( )
A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)
C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:﹣3x3+12x=___.
2、因式分解:2a2﹣4ab+2b2=_____.
3、因式分解:
(1)______; (2)______;
(3)______; (4)______.
4、在实数范围内分解因式:x2﹣3xy﹣y2=___.
5、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1);
(2)
2、因式分解:
(1);
(2)
3、分解因式
(1)
(2)
(3)
(4)利用因式分解计算:
4、将下列多项式分解因式:
(1)
(2)
5、(1)因式分解:
(2)计算:
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.
【详解】
解:A、,则原等式不成立,此项不符题意;
B、等式的右边不是乘积的形式,则此项不符题意;
C、是因式分解,此项符合题意;
D、等式右边中的不是整式,则此项不符题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记定义是解题关键.
2、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、D
【解析】
【分析】
因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式进行因式分解,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
不是化为整式的积的形式,故B不符合题意;
不是化为整式的积的形式,故C不符合题意;
是因式分解,故D符合题意;
故选D
【点睛】
本题考查的是因式分解的含义,掌握“利用因式分解的定义判断是否是因式分解”是解题的关键.
4、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
5、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,即可进行判断.
【详解】
A. ,变形是整式乘法,不是因式分解,故A错误;
B. ,右边不是几个因式乘积的形式,故B错误;
C. ,把一个多项式化成两个整式乘积的形式,变形是因式分解,故C正确;
D. ,变形是整式乘法,不是因式分解,故D错误.
【点睛】
本题考查因式分解的定义,掌握因式分解的定义是解题的关键.
6、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此逐一判断即可得答案.
【详解】
A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,
D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
故选:C.
【点睛】
此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键.
7、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
8、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
10、D
【解析】
【分析】
分别对四个选项进行因式分解,然后进行判断即可.
【详解】
解:A、原式=b(a2+7a-1),故不符合题意;
B、原式=3y(x2﹣x+2),故不符合题意;
C、原式=2xy(4z﹣3xy),故不符合题意;
D、原式=﹣2a(a﹣2b+3c),故符合题意.
故选D.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.
二、填空题
1、
【解析】
【分析】
先提公因式,然后再利用平方差公式求解即可.
【详解】
解:
故答案为
【点睛】
此题考查了因式分解的方法,熟练掌握提公因式法和平方差公式是解题的关键.
2、
【解析】
【分析】
先提取公因式2,再利用完全平方公式计算可得.
【详解】
解:原式=.
故答案为:
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
3、
【解析】
【分析】
把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可.
【详解】
(1)由平方差公式有
(2)由完全平方公式有
(3)提取公因式a有
(4)由十字相乘法分解因式有
故答案为:;;;.
【点睛】
本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键.
4、.
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
5、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)利用完全平方公式进行分解因式,即可解答;
(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
,
,
.
【点睛】
本题考查了因式分解,解决本题的关键是熟记因式分解的方法.
2、(1);(2)(5a+b)(a+5b)
【解析】
【分析】
(1)提取公因式,再利用完全平方公式进行因式分解即可;
(2)利用平方差公式进行因式分解即可.
【详解】
解:(1)
(2)
【点睛】
此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法.
3、(1);(2);(3);(4)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式进行因式分解即可;
(2)先分组再用完全平方公式进行运算,再利用平方差公式进行求解;
(3)先利用完全平方公式进行因式分解,再用平方差公式进行因式分解即可;
(4)分别对分子和分母进行因式分解,然后求解即可.
【详解】
解:(1);
(2);
(3);
(4)
;
【点睛】
此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法以及完全平方公式和平方差公式.
4、(1)-5x(x-5);(2)xy(2x-y)2
【解析】
【分析】
(1)提取公因式即可因式分解;
(2)先提取公因式,进而根据完全平方公式进行因式分解即可
【详解】
解:(1)
(2)
【点睛】
本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)首先提取公因式,再根据完全平方公式计算,即可得到答案;
(2)根据平方差公式和合并同类项的性质计算,即可得到答案.
【详解】
(1);
(2)
.
【点睛】
本题考查了乘法公式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解.
初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共15页。试卷主要包含了若,则E是,下列因式分解错误的是,下列多项式等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
2021学年第八章 因式分解综合与测试课后练习题: 这是一份2021学年第八章 因式分解综合与测试课后练习题,共17页。试卷主要包含了下列分解因式结果正确的是等内容,欢迎下载使用。