北京课改版七年级下册第八章 因式分解综合与测试复习练习题
展开京改版七年级数学下册第八章因式分解定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中,由左向右的变形是分解因式的是( )
A. B.
C. D.
2、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )
A.216 B.108
C.140 D.684
3、把代数式分解因式,正确的结果是( )
A.-ab(ab+3b) B.-ab(ab+3b-1)
C.-ab(ab-3b+1) D.-ab(ab-b-1)
4、下列因式分解正确的是( )
A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)
C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)
5、下列因式分解正确的是( )
A. B.
C. D.
6、下列分解因式结果正确的是( )
A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)
C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)
7、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
8、一元二次方程x2-3x=0的根是( )
A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3
9、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
10、下列因式分解正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将4a2﹣8ab+4b2因式分解后的结果为___.
2、若x+y=2,xy=-3,则x2y+xy2的值为______.
3、因式分解:______.
4、因式分解:5a2﹣45b2=_____.
5、把多项式2m+4mx+2x分解因式的结果为____________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:4xy2﹣4x2y﹣y3.
2、分解因式
(1)
(2)
3、把下列各式因式分解:
(1)
(2)
4、将下列各式分解因式:
(1); (2)
5、因式分解:
(1);
(2) (7x2+2y2)2﹣(2x2+7y2)2
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.
【详解】
解:A、,不是因式分解;故A错误;
B、,是因式分解;故B正确;
C、,故C错误;
D、,不是因式分解,故D错误;
故选:B.
【点睛】
本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.
2、D
【解析】
【分析】
根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.
【详解】
边长为a,b的长方形的周长为18,面积为12,
,,
故选D
【点睛】
本题考查了因式分解,代数式求值,整体代入是解题的关键.
3、B
【解析】
【分析】
根据提公因式法因式分解,先提出,即可求得答案
【详解】
解:
故选B
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
4、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.
【详解】
解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;
B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;
C、m2-6m+9=(m-3)2,故该选项正确;
D、1-a2=(a+1)(1-a),故该选项错误;
故选:C.
【点睛】
本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
5、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
6、D
【解析】
【分析】
分别对四个选项进行因式分解,然后进行判断即可.
【详解】
解:A、原式=b(a2+7a-1),故不符合题意;
B、原式=3y(x2﹣x+2),故不符合题意;
C、原式=2xy(4z﹣3xy),故不符合题意;
D、原式=﹣2a(a﹣2b+3c),故符合题意.
故选D.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.
7、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
8、C
【解析】
【分析】
利用提公因式法解一元二次方程.
【详解】
解: x2-3x=0
或
故选:C.
【点睛】
本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.
9、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
10、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
二、填空题
1、
【解析】
【分析】
先提取公因式4,再利用完全平方式即可求出结果.
【详解】
.
故答案为:
【点睛】
本题考查因式分解.掌握提公因式和公式法进行因式分解是解答本题的关键.
2、-6
【解析】
【分析】
先提取公因式 再整体代入求值即可.
【详解】
解: x+y=2,xy=-3,
故答案为:
【点睛】
本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值” 是解题的关键.
3、
【解析】
【分析】
直接提取公因式整理即可.
【详解】
解:,
故答案是:.
【点睛】
本题考查了提取公因式因式分解,解题的关键是找准公因式.
4、
【解析】
【分析】
原式提取公因式5,再利用平方差公式分解即可.
【详解】
解:原式=5(a2﹣9b2)
=5(a+3b)(a﹣3b).
故答案为:5(a+3b)(a﹣3b).
【点睛】
此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.
5、
【解析】
【分析】
根据提公因式法因式分解,提公因式因式分解即可
【详解】
解:2m+4mx+2x
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
三、解答题
1、-y(2x-y)2
【解析】
【分析】
先提取公因式-y,再利用完全平方公式分解因式即可得答案.
【详解】
4xy2﹣4x2y﹣y3
=-y(4x2-4xy+y2)
=-y(2x-y)2.
【点睛】
本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
2、(1)4xy(y+1)2;(2)-5(a-b)2
【解析】
【分析】
(1)提公因式后利用完全平方公式分解即可;
(2)提公因式后利用完全平方公式分解即可.
【详解】
(1),
,
=4xy(y+1)2;
(2),
,
=-5(a-b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.
3、(1);(2)
【解析】
【分析】
(1)先提取公因式 再按照完全平方公式分解因式即可;
(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.
4、(1);(2)
【解析】
【分析】
(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
5、(1);(2)
【解析】
【分析】
(1)先提出公因式,再利用完全公式,即可求解;
(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
数学七年级下册第八章 因式分解综合与测试课时训练: 这是一份数学七年级下册第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列多项式中有因式x﹣1的是,下列各式中,正确的因式分解是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试课时训练: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列各式的因式分解中正确的是,能利用进行因式分解的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试练习题,共17页。试卷主要包含了如图,长与宽分别为a,下列因式分解正确的是等内容,欢迎下载使用。