2020-2021学年第八章 因式分解综合与测试达标测试
展开京改版七年级数学下册第八章因式分解定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
2、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
3、下列因式分解正确的是( )
A. B.
C. D.
4、下列分解因式正确的是( )
A. B.
C. D.
5、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
6、下列从左边到右边的变形,是因式分解的是( )
A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)
C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z
7、下列运算错误的是( )
A. B. C. D.(a≠0)
8、把代数式分解因式,正确的结果是( )
A.-ab(ab+3b) B.-ab(ab+3b-1)
C.-ab(ab-3b+1) D.-ab(ab-b-1)
9、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
10、若可以用公式进行分解因式,则的值为( )
A.6 B.18 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:
(1)______; (2)______;
(3)______; (4)______.
2、因式分解:__.
3、因式分解:______.
4、分解因式:12a2b﹣9ac=___.
5、因式分解:=___________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式
(1); (2);
(3); (4).
2、(Ⅰ)先化简,再求值:,其中,;
(Ⅱ)分解因式:① ;② .
3、分解因式
(1); (2)
4、因式分解:
(1).
(2).
5、因式分解:
(1)9y2 - 16x2 (2)x2(x﹣y)+9(y﹣x)
(3)a 2 -4a+4 (4)-2a3+12a2-18a
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
2、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
3、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.
【详解】
解:A、,错误,故该选项不符合题意;
B、,错误,故该选项不符合题意;
C、,正确,故该选项符合题意;
D、,不能进行因式分解,故该选项不符合题意;
故选:C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
5、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
6、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.
【详解】
解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;
B、,原式错误,不符合题意;
C、x2﹣x=x(x﹣1),属于因式分解,符合题意;
D、2yz﹣y2z+z=,原式分解错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.
7、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
8、B
【解析】
【分析】
根据提公因式法因式分解,先提出,即可求得答案
【详解】
解:
故选B
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
9、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此逐一判断即可得答案.
【详解】
A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,
D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,
故选:C.
【点睛】
此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键.
10、D
【解析】
【分析】
根据完全平方公式进行因式分解即可得.
【详解】
解:由题意得:,
即,
则,
故选:D.
【点睛】
本题考查了利用完全平方公式进行因式分解,熟练掌握完全平方公式是解题关键.
二、填空题
1、
【解析】
【分析】
把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可.
【详解】
(1)由平方差公式有
(2)由完全平方公式有
(3)提取公因式a有
(4)由十字相乘法分解因式有
故答案为:;;;.
【点睛】
本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键.
2、
【解析】
【分析】
将当作整体,对式子先进行配方,然后利用平方差公式求解即可.
【详解】
解:原式.
故答案是:.
【点睛】
此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.
3、
【解析】
【分析】
先提公因式,再利用平方差公式即可;
【详解】
故答案为:.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.
4、
【解析】
【分析】
根据提公因式法分解因式求解即可.
【详解】
解:12a2b﹣9ac.
故答案为:.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
5、
【解析】
【分析】
先提公因式,再利用完全平方公式分解即可.
【详解】
解:
=
=
故答案为:
【点睛】
本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.
三、解答题
1、(1)xy(2x+y)2;(2)x(3x+5y)(3x-5y);(3)(a+1)2(a-1)2;(4)(2b-3a)2.
【解析】
【分析】
(1)先提取公因式,再利用完全平方公式继续分解即可;
(2)先提取公因式,再利用平方差公式继续分解即可;
(3)先利用平方差公式分解,再利用完全平方公式继续分解即可;
(4)利用完全平方公式分解即可.
【详解】
解:(1)
=xy(4x2+4xy+y2)
=xy(2x+y)2;
(2)
=x(9x2-25y2)
=x(3x+5y)(3x-5y);
(3)
=(a2+1+2a)( a2+1-2a)
=(a+1)2(a-1)2;
(4)
=(a+2b-4a)2
=(2b-3a)2.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
2、(Ⅰ),;(Ⅱ)①;②
【解析】
【分析】
(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.
(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.
【详解】
解:(Ⅰ)原式
当、时
原式.
(Ⅱ)①
.
②
.
【点睛】
本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.
3、(1);(2).
【解析】
【分析】
(1)先提取公因式 再利用完全平方公式进行分解即可;
(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.
【详解】
(1)解:原式=
=
(2)解:原式=
=
=
【点睛】
本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.
4、(1);(2)
【解析】
【分析】
(1)先提取y,再利用完全平方公式即可求解.
(2)先提取,再利用平方差公式即可求解.
【详解】
(1)原式;
(2)原式.
【点睛】
此题主要考查因式分解,解题的关键是熟知因式分解的方法.
5、(1);(2);(3);(4)
【解析】
【分析】
(1)原式直接用平方差公式进行因式分解即可;
(2)原式先提取公因式(x-y)再运用平方差公式进行因式分解即可;
(3)原式直接运用完全平方公式进行因式分解即可;
(4)原式先提取公因式-2a,再运用完全平方公式进行因式分解即可
【详解】
解:(1)9y2 - 16x2
=
=
(2)x2(x﹣y)+9(y﹣x)
= x2(x﹣y)-9(x﹣y)
=
=
(3)a 2 -4a+4
=
=
(4)-2a3+12a2-18a
=
=
【点睛】
本题主要考查了因式分解,熟练掌握乘法公式是解答本题的关键
初中第八章 因式分解综合与测试课后练习题: 这是一份初中第八章 因式分解综合与测试课后练习题,共15页。试卷主要包含了下列各式的因式分解中正确的是,若x2+ax+9=等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试课后测评: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列各因式分解正确的是,下列因式分解正确的是等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试复习练习题: 这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。